20分钟速成排序+查找算法(含模板)——二分查找,冒泡排序,快速排序(3)

本文详细介绍了二分查找的逻辑、冒泡排序和快速排序的步骤、时间复杂度和空间复杂度分析,展示了这两种常见的排序算法的思路和应用。
摘要由CSDN通过智能技术生成

elif nums[mid] > target:

right = mid - 1

小于目标左指针往右移

else:

left = mid + 1

没找到返回-1

return -1

思路

二分查找必须要在数据有序的条件下进行。左右指针分别位于数组左右边界,中值处于左右指针中点的位置,我们查找元素是依靠中值查找。决定中值的唯一条件就是左右指针的值。当中值与目标值不相等时,根据中值与目标值的大小判断进行移动左指针或右指针缩减范围。重复上述操作,直到找到元素或左右指针重合为止。

重合:当右指针为目标值时,左指针必须与右指针重合中值才能与目标值匹配,因此while条件必须是小于等于。

复杂度


时间复杂度:while循环的次数 -> O (log n)

空间复杂度:仅存在临时辅助变量left,right,mid -> O(1)

冒泡排序

====

模板

从小到大排序

def bubble_sort(nums):

重复N-1次即可完成全部排序

for i in range(1, len(nums)):

每进行一次循环都交换出一个最大的数排在后面

因为最后面的数已经排好序了,所以不用全部遍历比较

i不从0开始是防止j+1越界

for j in range(len(nums)-i):

如果前者值大于后者,那么交换他两的值

if nums[j] > nums[j+1]:

nums[j], nums[j+1] = nums[j+1], nums[j]

思路

每次大循环可以交换出一个最大值,进行N-1次交换即可完成排序。(如:若列表只有2个元素,那么进行2-1次交换即可完成排序。),而在小循环中,不断将前后元素相比较交换出更大的元素放在后面。小循环可以根据大循环的次数逐步缩小比较范围,因为后面元素已经排好序了,越靠后越大。

复杂度


时间复杂度:如果一开始就是正序一遍过的话复杂度是O(n),如果一开始是反序(最坏情况)复杂度是O(n^{2})),综上,总体时间复杂度 -> O(n^{2}))

空间复杂度:仅存在临时辅助变量i,j -> O(1)

快速排序

====

模板

def quick_sort(nums, start, end):

递归结束条件

if start >= end:

return

生成左右指针

left = start

right = end

生成一个参考点,将小于中心点的值放在左边,大于中心点的值放在右边

pivot = nums[right]

while left < right:

因为参考点在右边所以先从左指针开始寻找比参考点大的元素放在右侧右指针所指位置

while left < right and nums[left] <= pivot: # 如果想要倒序排序,将此处的<=,改成>=

left += 1

将左指针指向的元素赋值给右指针指向的位置,此时有两种情况,

1.左右指针重合left=right,此时赋值与否元素值都不会改变

2.找出了大于参考点值的元素,将其赋值给右指针指向的位置

nums[right] = nums[left]

移动右指针寻找比参考点小的元素

while left < right and nums[right] >= pivot: # 如果想要倒序排序,将此处的<=,改成>=,两处修改完后即为倒序排序

right -= 1

nums[left] = nums[right]

跳出循环后,左右指针必定指向同一位置 然后将参考点放入两指针重合处

nums[left] = pivot

以相同方法继续排序支点左右两边元素

quick_sort(nums, start, left-1)

quick_sort(nums, left+1, end)

简介

快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用的是一种分治策略,通常称其为分治法(Divide-and-ConquerMethod),是对冒泡排序算法的一种改进。

思路

首先确定一个参考点,以及排序的区间。排序区间用两个指针表示,两指针分别位于左右区间。开始分别相向移动左右指针,将小于参考点的值放在左边左指针位置,大于参考点的值放在右边右指针位置。重复上述步骤,直到两指针重合为止。当两指针重合时,两指针左边的值全部都小于参考点的值,右边的值全部都大于参考点的值。然后将参考点的值放在两指针所指位置。最后将支点左右两边元素继续上述步骤进行交换排序,直到剩下一个元素不可再划分为止。当每个元素都不可在划分之时,列表已经排序完毕。

思考

找到符合条件的值后将其放在左指针或右指针的位置,这样做是否会覆盖掉原有的值造成数据丢失?

**不会。**因为一开始我们就确定了一个参考点,这个参考点会记录当前左指针或右指针所指的值(假设参考点记录右指针所指的值),记录后我们称此时右指针所指的值为虚值,因为它已经被记录了,它是否存在都不会影响数据的完整性。这时候它就作为我们数值交换的媒介,媒介在右边,那么就从左边开始移动左指针寻找符合条件的元素覆盖掉虚值。虚值被覆盖掉后左边又生成了一个新的虚值,那么现在就移动右指针寻找符合条件的元素覆盖掉虚值…重复上述步骤,直到两指针重合为止。而两指针所指之处必定是重复元素(虚值),因此可以将参考点放入两指针所指位置。

那么我们就发现了一个特点:如果参考点在左侧要右指针先移动,反之,左指针先移动。

模拟图解


结合思路看图解效果更佳噢!

默认参数


可以看到使用快速排序方法我们需要向里面传入三个参数,但也许有人就不希望在调用这方法的时候需要传入这么多参数,就想传个数组就好。这样的话我们就要对该方法做些微调,将参数设置为默认参数。

从小到大排序

def quick_sort(nums, start=0, end=-1):

end = len(nums) - 1 if end == -1 else end

如果有传入参数那么就使用传入参数的值,否则就使用默认值。左区间默认从第一个元素开始,右区间默认从最后一个元素开始。

复杂度


自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

img

img

img

img

img

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)

.png)

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值