// 4.判断是否需要扩容
if (osize >= mHashes.length) {
-
final int n = osize >= (BASE_SIZE*2) ? (osize+(osize>>1))
- (osize >= BASE_SIZE ? (BASE_SIZE*2) : BASE_SIZE);
if (DEBUG) Log.d(TAG, "put: grow from " + mHashes.length + " to " + n);
final int[] ohashes = mHashes;
final Object[] oarray = mArray;
// 5.申请新的空间
allocArrays(n);
if (CONCURRENT_MODIFICATION_EXCEPTIONS && osize != mSize) {
throw new ConcurrentModificationException();
}
if (mHashes.length > 0) {
if (DEBUG) Log.d(TAG, “put: copy 0-” + osize + " to 0");
// 将数据复制到新的数组中
System.arraycopy(ohashes, 0, mHashes, 0, ohashes.length);
System.arraycopy(oarray, 0, mArray, 0, oarray.length);
}
// 6.释放旧的数组
freeArrays(ohashes, oarray, osize);
}
if (index < osize) {
// 7.如果 index 在当前 size 之内,则需要将 index 开始的数据移到 index + 1 处,以腾出 index 的位置
if (DEBUG) Log.d(TAG, "put: move " + index + “-” + (osize-index)
- " to " + (index+1));
System.arraycopy(mHashes, index, mHashes, index + 1, osize - index);
System.arraycopy(mArray, index << 1, mArray, (index + 1) << 1, (mSize - index) << 1);
}
if (CONCURRENT_MODIFICATION_EXCEPTIONS) {
if (osize != mSize || index >= mHashes.length) {
throw new ConcurrentModificationException();
}
}
// 8.然后根据计算得到的 index 分别插入 hash,key,以及 code
mHashes[index] = hash;
mArray[index<<1] = key;
mArray[(index<<1)+1] = value;
mSize++;
return null;
}
put 方法调用了其他几个内部的方法,其中关于扩容以及如何释放空间,申请新的空间这些,从算法层来讲其实不重要,只要知道一点就是,扩容会发生数据的复制,这个是会影响效率的就可以了。
而与算法相关性较大的 indexOfNull() 方法以及 indexOf() 方法的实现。由于这两个方法的实现基本一样,因此这里只分析 indexOf() 的实现。
int indexOf(Object key, int hash) {
final int N = mSize;
// Important fast case: if nothing is in here, nothing to look for.
if (N == 0) {
return ~0;
}
int index = binarySearchHashes(mHashes, N, hash);
// If the hash code wasn’t found, then we have no entry for this key.
if (index < 0) {
return index;
}
// If the key at the returned index matches, that’s what we want.
if (key.equals(mArray[index<<1])) {
return index;
}
// Search for a matching key after the index.
int end;
for (end = index + 1; end < N && mHashes[end] == hash; end++) {
if (key.equals(mArray[end << 1])) return end;
}
// Search for a matching key before the index.
for (int i = index - 1; i >= 0 && mHashes[i] == hash; i–) {
if (key.equals(mArray[i << 1])) return i;
}
// Key not found – return negative value indicating where a
// new entry for this key should go. We use the end of the
// hash chain to reduce the number of array entries that will
// need to be copied when inserting.
return ~end;
}
其实它原来的注释已经很详细了,详细的步骤是:
-
(1) 如果当前为空表,则直接返回 ~0,注意不是 0 ,而是最大的负数。
-
(2) 在 mHashs 数组中进行二分查找,找到 hash 的 index。
-
(3) 如果 index < 0,说明没有找到。
-
(4) 如果 index >= 0,且在 mArray 中对应的 index<<1 处的 key 与要找的 key 又相同,则认为是同一个 key,说明找到了。
-
(5) 如果 key 不相同,说明只是 hash code 相同,那么分别向后和向前进行搜索,如果找到了就返回。如果没找到,那么对 end 取反就是当前需要插入的 index 位置。
再回过头来看 put() 方法, put() 方法的具体实现都在源码中加以了详细的说明,感兴趣的可以详细阅读一下。而从 put 方法得出以下几个结论:
-
(1) mHashs 数组以升序的方式保存了所有的 hash code。
-
(2) 通过 hash code 在 mHashs 数组里的 index 值来确定 key 以及 value 在 mArrays 数组中的存储位置。一般来说分别就是 index << 1 以及 index << 1 + 1。再简单点说就是 index * 2 以及 index * 2 + 1。
-
(3) hashCode 必然可能存在冲突,这里是怎么解决的呢?这个是由上面的第 3 步和第 7 步所决定。第 3 步是得出应该插入的 index 的位置,而第 7 步则是如果 index < osize ,则说明原来 mArrays 中必然已经存在相同 hashCode 的值了,那么就把数据全部往后移一位,从而在 mHashs 中插入多个相同的 hash code 并且一定是连接在一起的,而在 mArrays 中插入新的 key 和 value,最终得以解决 hash 冲突。
上面的结论可能还是让人觉得有点晕,那么再来看看下面的图吧,就一定能明白了。
上面图说, index == 0 时 和 index == 1时的 hash code 是一样的,说明 key1 与 key2 的 hash code 是一样的,也就是存在 hash 冲突了。那么,如上,这里的解决办法就是 hash code 存储了 2 份,而 key-value 分别存储一份。
- get() 方法
public V get(Object key) {
final int index = indexOfKey(key);
return index >= 0 ? (V)mArray[(index<<1)+1] : null;
}
主要就是通过 indexOfKey() 计算出 index,而 indexOfKey() 的实现就是调用 indexOfNull () 和 indexOf(),其具体的实现已经上面分析过了。这里如果返了 index >= 0,则说明一定是找到了,那么根据前面的规则,在 mArray 中,index<<1 + 1 就是所要获取的 value 了。
- remove() 方法
public V remove(Object key) {
final int index = indexOfKey(key);
if (index >= 0) {
return removeAt(index);
}
return null;
}
首先通过 indexOfKey() 计算出 index 以判断其是否存在,如果存在则进一步调用 removeAt() 来删除相应的 hash code 以及 key-value。
public V removeAt(int index) {
final Object old = mArray[(index << 1) + 1];
final int osize = mSize;
final int nsize;
// 如果 size 小于等于1 ,移除后数组长度将为 0。为了压缩内存,这里直接将mHashs 以及 mArray 置为了空数组
if (osize <= 1) {
// Now empty.
if (DEBUG) Log.d(TAG, “remove: shrink from " + mHashes.length + " to 0”);
final int[] ohashes = mHashes;
final Object[] oarray = mArray;
mHashes = EmptyArray.INT;
mArray = EmptyArray.OBJECT;
freeArrays(ohashes, oarray, osize);
nsize = 0;
} else {
// size > 1 的情况,则先将 size - 1
nsize = osize - 1;
if (mHashes.length > (BASE_SIZE*2) && mSize < mHashes.length/3) {
// 如果上面的条件符合,那么就要进行数据的压缩。
// Shrunk enough to reduce size of arrays. We don’t allow it to
// shrink smaller than (BASE_SIZE*2) to avoid flapping between
// that and BASE_SIZE.
final int n = osize > (BASE_SIZE2) ? (osize + (osize>>1)) : (BASE_SIZE2);
if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to " + n);
final int[] ohashes = mHashes;
final Object[] oarray = mArray;
allocArrays(n);
if (CONCURRENT_MODIFICATION_EXCEPTIONS && osize != mSize) {
throw new ConcurrentModificationException();
}
if (index > 0) {
if (DEBUG) Log.d(TAG, “remove: copy from 0-” + index + " to 0");
System.arraycopy(ohashes, 0, mHashes, 0, index);
System.arraycopy(oarray, 0, mArray, 0, index << 1);
}
if (index < nsize) {
if (DEBUG) Log.d(TAG, "remove: copy from " + (index+1) + “-” + nsize
- " to " + index);
System.arraycopy(ohashes, index + 1, mHashes, index, nsize - index);
System.arraycopy(oarray, (index + 1) << 1, mArray, index << 1,
(nsize - index) << 1);
}
} else {
if (index < nsize) {
// 如果 index 在 size 内,则将数据往前移一位
if (DEBUG) Log.d(TAG, "remove: move " + (index+1) + “-” + nsize
- " to " + index);
System.arraycopy(mHashes, index + 1, mHashes, index, nsize - index);
System.arraycopy(mArray, (index + 1) << 1, mArray, index << 1,
(nsize - index) << 1);
}
// 然后将最后一位数据置 null
mArray[nsize << 1] = null;
mArray[(nsize << 1) + 1] = null;
}
}
if (CONCURRENT_MODIFICATION_EXCEPTIONS && osize != mSize) {
throw new ConcurrentModificationException();
}
mSize = nsize;
return (V)old;
}
一般情况下删除一个数据,只需要将 index 后面的数据都往 index 方向移一位,然后删除末位数即可。而如果当前的数组中的条件达到 mHashs 的长度大于 BASE_SIZE_2 且实际大小又小于其长度的 1/3,那么就要进行数据的压缩。而压缩后的空间至少也是 BASE_SIZE_2 的大小。
三、总结
ArrayMap 中比较重要的是 put() 方法以及 remvoeAt() 方法的实现,这两个方法基本实现了 ArrayMap 的所有重要的特性。这里再重复一下以作为全文的总结。
-
mHashs 数组以升序的方式保存了所有的 hash code,在查找数据时则通过二分查找 hash code 所对应的 index。这也是它的 get() 比 HashMap 慢的根据原因所在。
-
通过 hash code 在 mHashs 数组里的 index 值来确定 key 以及 value 在 mArrays 数组中的存储位置。一般来说分别就是 index << 1 以及 index << 1 + 1。再简单点说就是 index * 2 以及 index * 2 + 1。
-
hashCode 必然可能存在冲突,这里是怎么解决的呢?简单点说就是,在 mHashs 中相邻地存多份 hash code,而在 mArray 中分别以它们的 index 来计算 key-value 的存储位置。
-
当进行 remove 操作时,在一定条件下,可能会发生数据的压缩,从而节省内存的使用。
最后,感谢你能读到并读完此文章。受限于作者水平有限,如果存在错误或者疑问都欢迎留言讨论。如果我的分享能够帮助到你,也请记得帮忙点个赞吧,鼓励我继续写下去,谢谢。
PS:关于我
本人是一个拥有6年开发经验的帅气Android攻城狮,记得看完点赞,养成习惯,关注这个喜欢写干货的程序员。
另外耗时两年整理收集的Android一线大厂面试完整考点PDF出炉,【完整版】已更新在我的【Github】,如有面试、进阶需要的朋友们可以去参考参考,如果对你有帮助,可以点个Star哦!
文末
不管怎么样,不论是什么样的大小面试,要想不被面试官虐的不要不要的,只有刷爆面试题题做好全面的准备,当然除了这个还需要在平时把自己的基础打扎实,这样不论面试官怎么样一个知识点里往死里凿,你也能应付如流啊
小编将自己6年以来的面试经验和学习笔记都整理成了一个**937页的PDF,**以及我学习进阶过程中看过的一些优质视频教程。
其实看到身边很多朋友抱怨自己的工资很低,包括笔者也是一样的,其原因是在面试过程中没有给面试官一个很好的答案。所以笔者会持续更新面试过程中遇到的问题,也希望大家和笔者一起进步,一起学习。
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门,即可获取!
(https://i-blog.csdnimg.cn/blog_migrate/10cd35453a258cb9330b1a5467dd6a64.png)
文末
不管怎么样,不论是什么样的大小面试,要想不被面试官虐的不要不要的,只有刷爆面试题题做好全面的准备,当然除了这个还需要在平时把自己的基础打扎实,这样不论面试官怎么样一个知识点里往死里凿,你也能应付如流啊
小编将自己6年以来的面试经验和学习笔记都整理成了一个**937页的PDF,**以及我学习进阶过程中看过的一些优质视频教程。
[外链图片转存中…(img-fmOhft47-1715167002073)]
其实看到身边很多朋友抱怨自己的工资很低,包括笔者也是一样的,其原因是在面试过程中没有给面试官一个很好的答案。所以笔者会持续更新面试过程中遇到的问题,也希望大家和笔者一起进步,一起学习。
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门,即可获取!