LASSO回归

本文介绍了岭回归通过添加正则化项控制权重,防止过拟合,以及LASSO回归的稀疏特性。重点讨论了正则化在模型稳定性和系数选择上的作用,以及梯度下降在求解过程中的应用。
摘要由CSDN通过智能技术生成

岭回归

在线性回归损失函数的基础上增加正则化项,对权重进行限制,将有限的权重放到更重要的特征维度上。   

正则化项的作用:使每个权重都不会过大,若某个权重过大,自变量x一旦发生微小的改变,就会导致输出发生巨大的变化,容易过拟合。加上正则化项之后精度降低,稳定性升高

权重计算的过程:

λ的值越大,表示数据对最终权重w的影响越小,λ值增加,不重要的维度的权重会随之减少,避免求逆不存在的现象。(X转置X)求逆容易出现不存在的现象,加入了λ之后可以避免

LASSO回归

Least Absolute Shrinkage and Selection Operator

LASSO回归和岭回归的对比

与岭回归相比,LASSO回归使学习得到的权重更加稀疏(集中),不重要的系数可以为0

梯度下降搜索的过程:

时间来不及了,就没推过程……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值