岭回归
在线性回归损失函数的基础上增加正则化项,对权重进行限制,将有限的权重放到更重要的特征维度上。
正则化项的作用:使每个权重都不会过大,若某个权重过大,自变量x一旦发生微小的改变,就会导致输出发生巨大的变化,容易过拟合。加上正则化项之后精度降低,稳定性升高
权重计算的过程:
λ的值越大,表示数据对最终权重w的影响越小,λ值增加,不重要的维度的权重会随之减少,避免求逆不存在的现象。(X转置X)求逆容易出现不存在的现象,加入了λ之后可以避免
LASSO回归
Least Absolute Shrinkage and Selection Operator
LASSO回归和岭回归的对比
与岭回归相比,LASSO回归使学习得到的权重更加稀疏(集中),不重要的系数可以为0
梯度下降搜索的过程:
时间来不及了,就没推过程……