李兴华java视频百度云,HBase入门教程


在介绍完了HBase的数据模型以后,我们可以回答本文一开始的前两个问题:

  1. 什么样的数据适合用HBase来存储?
  1. 既然HBase也是一个数据库,能否用它将现有系统中昂贵的Oracle替换掉?

HBase的数据模型比较简单,数据按照RowKey排序存放,适合HBase存储的数据,可以简单总结如下:

  • 实体为中心的数据

实体可以包括但不限于如下几种:

  • 自然人/账户/手机号/车辆相关数据

  • 用户画像数据(含标签类数据)

  • 图数据(关系类数据)

描述这些实体的,可以有基础属性信息、实体关系(图数据)、所发生的事件(如交易记录、车辆轨迹点)等等。

  • 事件为中心的数据

  • 监控数据

  • 时序数据

  • 实时位置类数据

  • 消息/日志类数据

上面所描述的这些数据,有的是结构化数据,有的是半结构化或非结构化数据。HBase的“稀疏矩阵”设计,使其应对非结构化数据存储时能够得心应手,但在我们的实际用户场景中,结构化数据存储依然占据了比较重的比例。由于HBase仅提供了基于RowKey的单维度索引能力,在应对一些具体的场景时,依然还需要基于HBase之上构建一些专业的能力,如:

  • OpenTSDB 时序数据存储,提供基于Metrics+时间+标签的一些组合维度查询与聚合能力

  • GeoMesa 时空数据存储,提供基于时间+空间范围的索引能力

  • JanusGraph 图数据存储,提供基于属性、关系的图索引能力

HBase擅长于存储结构简单的海量数据但索引能力有限,而Oracle等传统关系型数据库(RDBMS)能够提供丰富的查询能力,但却疲于应对TB级别的海量数据存储,HBase对传统的RDBMS并不是取代关系,而是一种补充。

HBase与HDFS


我们都知道HBase的数据是存储于HDFS里面的,相信大家也都有这么的认知:

HBase是一个分布式数据库,HDFS是一个分布式文件系统

理解了这一点,我们先来粗略回答本文已开始提出的其中两个问题:

  1. HBase中的数据为何不直接存放于HDFS之上?

HBase中存储的海量数据记录,通常在几百Bytes到KB级别,如果将这些数据直接存储于HDFS之上,会导致大量的小文件产生,为HDFS的元数据管理节点(NameNode)带来沉重的压力。

  1. 文件能否直接存储于HBase里面?

如果是几MB的文件,其实也可以直接存储于HBase里面,我们暂且将这类文件称之为小文件,HBase提供了一个名为MOB的特性来应对这类小文件的存储。但如果是更大的文件,强烈不建议用HBase来存储,关于这里更多的原因,希望你在详细读完本文所有内容之后能够自己解答。

集群角色


关于集群环境,你可以使用国内外大数据厂商的平台,如Cloudera,Hontonworks以及国内的华为,都发行了自己的企业版大数据平台,另外,华为云、阿里云中也均推出了全托管式的HBase服务。

我们假设集群环境已经Ready了,先来看一下集群中的关键角色

ClusterRoles

相信大部分人对这些角色都已经有了一定程度的了解,我们快速的介绍一下各个角色在集群中的主要职责(注意:这里不是列出所有的职责):

  • ZooKeeper

在一个拥有多个节点的分布式系统中,假设,只能有一个节点是主节点,如何快速的选举出一个主节点而且让所有的节点都认可这个主节点?这就是HBase集群中存在的一个最基础命题。

利用ZooKeeper就可以非常简单的实现这类”仲裁”需求,ZooKeeper还提供了基础的事件通知机制,所有的数据都以 ZNode的形式存在,它也称得上是一个”微型数据库”。

  • NameNode

HDFS作为一个分布式文件系统,自然需要文件目录树的元数据信息,另外,在HDFS中每一个文件都是按照Block存储的,文件与Block的关联也通过元数据信息来描述。NameNode提供了这些元数据信息的存储

  • DataNode

HDFS的数据存放节点。

  • RegionServer

HBase的数据服务节点

  • Master

HBase的管理节点,通常在一个集群中设置一个主Master,一个备Master,主备角色的”仲裁”由ZooKeeper实现。 Master主要职责

  1. 负责管理所有的RegionServer

  2. 建表/修改表/删除表等DDL操作请求的服务端执行主体

  3. 管理所有的数据分片(Region)到RegionServer的分配

  4. 如果一个RegionServer宕机或进程故障,由Master负责将它原来所负责的Regions转移到其它的RegionServer上继续提供服务

  5. Master自身也可以作为一个RegionServer提供服务,该能力是可配置的

集群部署建议


如果基于物理机/虚拟机部署,通常建议:

  • RegionServer与DataNode联合部署,RegionServer与DataNode按1:1比例设置。

这种部署的优势在于,RegionServer中的数据文件可以存储一个副本于本机的DataNode节点中,从而在读取时可以利用HDFS中的”短路径读取(Short Circuit)“来绕过网络请求,降低读取时延。

Deployment

  • 管理节点独立于数据节点部署

如果是基于物理机部署,每一台物理机节点上可以设置几个RegionServers/DataNodes来提升资源使用率。

也可以选择基于容器来部署,如在HBaseCon Asia 2017大会知乎的演讲主题中,就提到了知乎基于Kubernetes部署HBase服务的实践。

对于公有云HBase服务而言,为了降低总体拥有成本(TCO),通常选择”计算与存储物理分离“的方式,从架构上来说,可能导致平均时延略有下降,但可以借助于共享存储底层的IO优化来做一些”弥补”。

HBase集群中的RegionServers可以按逻辑划分为多个Groups,一个表可以与一个指定的Group绑定,可以将RegionServer Group理解成将一个大的集群划分成了多个逻辑子集群,借此可以实现多租户间的隔离,这就是HBase中的RegionServer Group特性。

示例数据


给出一份我们日常都可以接触到的数据样例,先简单给出示例数据的字段定义:

Data-Sample-Definition

如上定义与实际的通话记录字段定义相去甚远,本文力求简洁,仅给出了最简单的示例。如下是”虚构”的样例数据:

Data-Sample

在本文大部分内容中所涉及的一条数据,是上面加粗的最后一行”Mobile1“为”13400006666“这行记录。

写数据之前:建立连接


Login

在启用了安全特性的前提下,Login阶段是为了完成用户认证(确定用户的合法身份),这是后续一切安全访问控制的基础。

当前Hadoop/HBase仅支持基于Kerberos的用户认证,ZooKeeper除了Kerberos认证,还能支持简单的用户名/密码认证,但都基于静态的配置,无法动态新增用户。如果要支持其它第三方认证,需要对现有的安全框架做出比较大的改动。

创建Connection

Connection可以理解为一个HBase集群连接的抽象,建议使用ConnectionFactory提供的工具方法来创建。因为HBase当前提供了两种连接模式:同步连接,异步连接,这两种连接模式下所创建的Connection也是不同的。我们给出ConnectionFactory中关于获取这两种连接的典型方法定义:

CompletableFuture createAsyncConnection(Configuration conf,

User user);

Connection createConnection(Configuration conf, ExecutorService pool, User user)

throws IOException;

Connection中主要维护着两类共享的资源:

  • 线程池

  • Socket连接

这些资源都是在真正使用的时候才会被创建,因此,此时的连接还只是一个”虚拟连接”。

写数据之前:创建数据表


DDL操作的抽象接口 – Admin

Admin定义了常规的DDL接口,列举几个典型的接口:

void createNamespace(final NamespaceDescriptor descriptor) throws IOException;

void createTable(final HTableDescriptor desc, byte[][] splitKeys) throws IOException;

TableName[] listTableNames() throws IOException;

预设合理的数据分片 – Region

分片数量会给读写吞吐量带来直接的影响,因此,建表时通常建议由用户主动指定划分Region分割点,来设定Region的数量。

HBase中数据是按照RowKey的字典顺序排列的,为了能够划分出合理的Region分割点,需要依据如下几点信息:

  • Key的组成结构

  • Key的数据分布预估

如果不能基于Key的组成结构来预估数据分布的话,可能会导致数据在Region间的分布不均匀

  • 读写并发度需求

依据读写并发度需求,设置合理的Region数量

为表定义合理的Schema

既然HBase号称”schema-less”的数据存储系统,那何来的是schema? 的确,在数据库范式的支持上,HBase非常弱,这里的Schema,主要指如下一些信息的设置:

  • NameSpace设置

  • Column Family的数量

  • 每一个Column Family中所关联的一些关键配置

  • Compression

HBase当前可以支持Snappy,GZ,LZO,LZ4,Bzip2以及ZSTD压缩算法

  • DataBlock Encoding

HBase针对自身的特殊数据模型所做的一种压缩编码

  • BloomFilter

可用来协助快速判断一条记录是否存在

  • TTL

指定数据的过期时间

  • StoragePolicy

指定Column Family的存储策略,可选配置有:

“ALL_SSD”,”ONE_SSD”,”HOT”,”WARM”,”COLD”,”LAZY_PERSIST”

HBase中并不需要预先设置Column定义信息,这就是HBase schema-less设计的核心。

Client发送建表请求到Master

建表的请求是通过RPC的方式由Client发送到Master:

  • RPC接口基于Protocol Buffer定义

  • 建表相关的描述参数,也由Protocol Buffer进行定义及序列化

Client端侧调用了Master服务的什么接口,参数是什么,这些信息都被通过RPC通信传输到Master侧,Master再依据这些接口\参数描述信息决定要执行的操作。2.0版本中,HBase目前已经支持基于Netty的异步RPC框架

关于HBase RPC框架

早期的HBase RPC框架,完全借鉴了Hadoop中的实现,那时,Netty项目尚不盛行。

Master侧接收到Client侧的建表请求以后,一些主要操作包括:

  1. 生成每一个Region的描述信息对象HRegionInfo,这些描述信息包括:Region ID, Region名称,Key范围,表名称等信息

  2. 生成每一个Region在HDFS中的文件目录

  3. 将HRegionInfo信息写入到记录元数据的hbase:meta表中。

说明

meta表位于名为”hbase”的namespace中,因此,它的全称为”hbase:meta”。

但在本系列文章范畴内,常将其缩写为”meta”。

整个过程中,新表的状态也是记录在hbase:meta表中的,而不用再存储在ZooKeeper中。

如果建表执行了一半,Master进程挂掉了,如何处理?这里是由HBase自身提供的一个名为**Procedure(V2)**的框架来保障操作的事务性的,备Master接管服务以后,将会继续完成整个建表操作。

一个被创建成功的表,还可以被执行如下操作:

  • Disable 将所有的Region下线,该表暂停读写服务

  • Enable 将一个Disable过的表重新Enable,也就是上线所有的Region来正常提供读写服务

  • Alter 更改表或列族的描述信息

Master分配Regions到各个RegionServers

新创建的所有的Regions,通过AssignmentManager将这些Region按照轮询(Round-Robin)的方式分配到每一个RegionServer中,具体的分配计划是由LoadBalancer来提供的。

AssignmentManager负责所有Regions的分配/迁移操作,Master中有一个定时运行的线程,来检查集群中的Regions在各个RegionServer之间的负载是否是均衡的,如果不均衡,则通过LoadBalancer生成相应的Region迁移计划,HBase中支持多种负载均衡算法,有最简单的仅考虑各RegionServer上的Regions数目的负载均衡算法,有基于迁移代价的负载均衡算法,也有数据本地化率优先的负载均衡算法,因为这一部分已经提供了插件化机制,用户也可以自定义负载均衡算法。

总结

到目前为止,文章介绍了如下关键内容:

  1. HBase项目概述,呈现了HBase社区的活跃度以及搜索引擎热度等信息

  2. HBase数据模型部分,讲到了RowKey,稀疏矩阵,Region,Column Family,KeyValue等概念

  3. 基于HBase的数据模型,介绍了HBase的适合场景(以实体/事件为中心的简单结构的数据)

  4. 介绍了HBase与HDFS的关系

  5. 介绍了集群的关键角色:ZooKeeper, Master, RegionServer,NameNode, DataNode

  6. 集群部署建议

  7. 给出了一些示例数据

  8. 写数据之前的准备工作:建立集群连接,建表(建表时应该定义合理的Schema以及设置合理的Region数量),建表由Master处理,新创建的Regions由Region AssignmentManager负责分配到各个RegionServer。
    自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)

img

最后

针对最近很多人都在面试,我这边也整理了相当多的面试专题资料,也有其他大厂的面经。希望可以帮助到大家。

下面的面试题答案都整理成文档笔记。也还整理了一些面试资料&最新2021收集的一些大厂的面试真题(都整理成文档,小部分截图)

在这里插入图片描述

最新整理电子书

在这里插入图片描述

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!**

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)

img

最后

针对最近很多人都在面试,我这边也整理了相当多的面试专题资料,也有其他大厂的面经。希望可以帮助到大家。

下面的面试题答案都整理成文档笔记。也还整理了一些面试资料&最新2021收集的一些大厂的面试真题(都整理成文档,小部分截图)

[外链图片转存中…(img-VZE2Rtr4-1713468862550)]

最新整理电子书

[外链图片转存中…(img-3PWk0tRt-1713468862550)]

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值