【RNN基础】——一文搞明白RNN

本文详细阐述了循环神经网络(RNN)及其与卷积神经网络(CNN)的区别,重点讨论了一对多、多对一和多对多模式下的RNN应用,如语言翻译、文本生成等。还涉及了RNN中的梯度消失问题、注意力机制以及在NLP领域的广泛使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、一对多(vector-to-sequence )

2、多对一(sequence-to-vector )

3、多对多(Encoder-Decoder )

7、CNN和RNN的异同点

8、RNN中为什么会出现梯度消失?如何解决?

9、如何理解RNN的注意力机制


1、定义

====

循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络(recursive neural network) 。

对循环神经网络的研究始于二十世纪80-90年代,并在二十一世纪初发展为深度学习(deep learning)算法之一  ,其中双向循环神经网络(Bidirectional RNN, Bi-RNN)和长短期记忆网络(Long Short-Term Memory networks,LSTM)是常见的循环神经网络  。

2、有了CNN,为什么需要RNN?

=================

在CNN网络中的训练样本的数据为IID数据(独立同分布数据),所解决的问题也是分类问题或者回归问题或者是特征表达问题。但更多的数据是不满足IID的,如语言翻译,自动文本生成。它们是一个序列问题,包括时间序列和空间序列。比如时间序列数据,这类数据是在不同时间点上收集到的数据,反映了某一事物、现象等随时间的变化状态或程度。一般的神经网络,在训练数据足够、算法模型优越的情况下,给定特定的x,就能得到期望y。其一般处理单个的输入,前一个输入和后一个输入完全无关,但实际应用中,某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的。 这时就要用到RNN网络,RNN的结构图如下所示:

序列样本一般分为:一对多(生成图片描述),多对一(视频解说,文本归类),多对多(语言翻译)。RNN不仅能够处理序列输入,也能够得到序列输出,这里的序列指的是向量的序列。RNN学习来的是一个程序,也可以说是一个状态机,不是一个函数。

3、RNN的主要

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值