将几万张图片合成一张图片,制作一个超赞的马赛克图

:return: 符合要求的图片对象数组、颜色平均值数组

‘’’

logger.info(“开始源图片筛选及颜色平均值计算处理”)

source_images = [] # 初始化源图像列表

avg_colors = [] # 平均颜色列表

‘’‘使用进度条进行遍历源图片的文件夹’‘’

for image_path in tqdm(glob.glob(“{}/*.jpg”.format(source_images_path))):

try: # 此处加入异常处理,若出现处理异常的图片则跳过该图片处理

读取彩色图片

img_obj = cv2.imread(image_path, cv2.IMREAD_COLOR)

‘’’

img_obj.shape[-1]读取图像的通道数,通道值为3表示每个像素点的颜色取值范围(0-255,0-255,0-255)。

将通道值不等于3的图片跳过。

‘’’

if img_obj.shape[-1] != 3:

continue

重新设置图片的尺寸

img_obj = cv2.resize(img_obj, (block_size, block_size))

计算该图像颜色的平均值

avg_color = np.sum(np.sum(img_obj, axis=0), axis=0) / (block_size * block_size)

将符合要求的图像对象添加到数组中

source_images.append(img_obj)

将符合要求的图像颜色平均值添加到数组中

avg_colors.append(avg_color)

except:

logger.error(“异常图片路径:” + image_path)

logger.info(“结束源图片筛选及颜色平均值计算处理”)

return source_images, np.array(avg_colors)

编写parse_args()函数,用于解析文件相关的参数。之后需要获取参数时直接从参数解析器中提取使用即可。

def parse_args():

‘’’

参数解析函数

:return:

‘’’

logger.info(“开始文件参数解析处理”)

parser = argparse.ArgumentParser(‘图片文件参数解析器’)

添加目标图像路径

parser.add_argument(‘–targetpath’, type=str, default=‘target.jpg’, help=‘目标图像路径’)

添加输出图像路径

parser.add_argument(‘–outputpath’, type=str, default=‘output.jpg’, help=‘输出图像的路径’)

源图片文件路径

parser.add_argument(‘–sourcepath’, type=str, default=‘source_images’, help=‘源图片文件夹路径’)

需要转换的每个图片的目标尺寸

parser.add_argument(‘–blocksize’, type=int, default=15, help=‘每个图片的目标尺寸’)

解析参数并返回

args = parser.parse_args()

logger.info(“结束文件参数解析处理”)

return args

编写main_merage()函数,用于实现马赛克图片的正式合成。

def main_merage(params):

‘’’

图片合成处理函数

:param params: 文件参数

:return:

‘’’

获取目标图片对象,默认按彩色方式读取

target_image_obj = cv2.imread(params.targetpath)

根据目标图片对象,生成对应的零矩阵

output_image_obj = np.zeros(target_image_obj.shape, np.uint8)

获取符合要求的源图片数组与平均颜色数组

source_images, avg_colors = read_source_images(params.sourcepath, params.blocksize)

根据目标图片的长、宽执行遍历

‘’‘target_image_obj.shape[1]、target_image_obj.shape[0]获得图片的长、宽’‘’

logger.info(“开始图片合成处理”)

for i, j in tqdm(product(range(int(target_image_obj.shape[1] / params.blocksize)),

range(int(target_image_obj.shape[0] / params.blocksize)))):

block = target_image_obj[j * params.blocksize: (j + 1) * params.blocksize,

i * params.blocksize: (i + 1) * params.blocksize, :]

avg_color = np.sum(np.sum(block, axis=0), axis=0) / (params.blocksize * params.blocksize)

distances = np.linalg.norm(avg_color - avg_colors, axis=1)

idx = np.argmin(distances)

output_image_obj[j * params.blocksize: (j + 1) * params.blocksize,

i * params.blocksize: (i + 1) * params.blocksize, :] = \

source_images[idx]

cv2.imwrite(params.outputpath, output_image_obj)

cv2.imshow(‘输出生成的图片’, output_image_obj)

logger.info(“结束图片合成处理”)

使用前面文章中提到的百度图片下载器下载我们需要的源图片。

file

没有下载的到公众号回复"百度图片下载器"去下载就可以了。

源图片准备的越多越好,我这里直接准备了两万张美女图片作为源图片。如果想让生成的图片更加逼真就下载更多的源图片。
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

img

img

img

img

img

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)

243c1008edf79.png)

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值