方波逆变器的核心缺陷解析:谐波与功能限制
一、方波逆变器的两大核心缺陷
1. 高次谐波问题
(1) 谐波特性
方波逆变器输出的电压波形为含有不同频率谐波的方波,其数学表达式可展开为傅里叶级数:
f ( t ) = 4 π ( sin ( ω t ) + 1 3 sin ( 3 ω t ) + 1 5 sin ( 5 ω t ) + ⋯ ) f(t) = \frac{4}{\pi} \left( \sin(\omega t) + \frac{1}{3}\sin(3\omega t) + \frac{1}{5}\sin(5\omega t) + \cdots \right) f(t)=π4(sin(ωt)+31sin(3ωt)+51sin(5ωt)+⋯)
其中, ω \omega ω为基频角速度, t t t为时间。图1为将含有多个谐波组成的方波信号,展开成谐波频率 f = [ 50 , 150 , 250 , 350 ] f=[50,150,250,350] f=[50,150,250,350]Hz的信号图:
(2) 三大危害
-
①附加损耗
在铁芯电感/变压器负载中,谐波电流引发额外损耗:
铜损: P copper = I 2 R P_{\text{copper}} = I^2 R Pcopper=I2R
铁损: P iron = k h f B 2 V + k e f 2 B 2 V P_{\text{iron}} = k_h f B^2 V + k_e f^2 B^2 V Piron=khfB2V+kef2B2V
( k h k_h kh、 k e k_e ke为损耗系数, B B B为磁通密度, V V V为体积) -
②电磁干扰(EMI)的谐波影响
高频谐波通过辐射/传导干扰设备,其影响程度与谐波频率直接相关。总谐波失真(THD)公式可展开为:
THD = ∑ n = 2 ∞ V n 2 V 1 \text{THD} = \frac{\sqrt{\sum_{n=2}^{\infty} V_n^2}}{V_1} THD=V1∑n=2∞Vn2
其中: -
V n = 4 π ⋅ V DC 2 n − 1 V_n = \frac{4}{\pi} \cdot \frac{V_{\text{DC}}}{2n-1} Vn=π4⋅