数仓建模—IOTA架构

本文介绍了IOTA架构,作为大数据3.0时代的数仓建模方案,旨在解决Lambda和Kappa架构的局限性。IOTA通过Common Data Model、Edge SDKs & Edge Servers、实时数据缓存和历史数据存储等组件,实现去ETL化、Ad-hoc即时查询和边缘计算,以提升数据处理效率和实时响应能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数仓建模—IOTA架构

经过这么多年的发展,已经从大数据1.0的BI/Datawarehouse时代,经过大数据2.0的Web/APP过渡,进入到了IOT的大数据3.0时代,而随之而来的是数据架构的变化。

其实我们在前面的文章中介绍过这一块的内容,可以参考数仓建模—数仓架构发展史,今天我们介绍一个新的架构IOTA,开始之前我们还是先回顾一下之前的大数据架构解决方案

Lambda架构

在过去Lambda数据架构成为每一个公司大数据平台必备的架构,它解决了一个公司大数据批量离线处理和实时数据处理的需求。一个典型的Lambda架构如下:

img

数据从底层的数据源开始,经过各种各样的格式进入大数据平台,在大数据平台中经过Kafka、Flume等数据组件进行收集,然后分成两条线进行计算。一条线是进入流式计算平台(例如 Storm、Flink或者Spark Streaming),去计算实时的一些指标;另一条线进入批量数据处理离线计算平台(例如Ma

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值