Java编程:查找算法——顺序查找、二分查找、插值查找、斐波那契查找

本文详细解读了一线大厂Java面试中常见的问题,涵盖了线性查找、二分查找、插值查找和斐波那契查找算法,以及Java后端架构的关键知识点,如集合、JVM、并发等,还提供了实战项目源码和视频解析。
摘要由CSDN通过智能技术生成

《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》点击传送门,即可获取!

package search;

import java.util.ArrayList;

import java.util.List;

public class SeqSearch {

public static void main(String[] args) {

int[] arr = {1, 7, 3, 11,11, -1, 34, 98};

int index = seqSearch(arr, 111);

List result = seqSearchAll(arr, 11);

if (index == -1) {

System.out.println(“没有找到”);

} else {

System.out.println("找到了,下标 = " + result);

}

}

/**

  • 这里我们实现的线性查找是找到一个满足条件的值就返回

  • @param arr 查找数组

  • @param value 查找的值

  • @return 返回查找的值的下标

*/

public static int seqSearch(int[] arr, int value) {

// 线性查找是逐一比对,发现有相同的值时候,就返回下标

for (int i = 0; i < arr.length; i++) {

if (arr[i] == value) {

return i;

}

}

return -1;

}

public static List seqSearchAll(int[] arr, int value) {

List result = new ArrayList<>();

for (int i = 0; i < arr.length; i++) {

if (arr[i] == value) {

result.add(i);

}

}

return result;

}

}

二分查找算法


二分查找思路分析

在这里插入图片描述

案例1:查找第一个满足条件的下标


请对一个有序数组进行二分查找 {1,8, 10, 89, 1000, 1234} ,输入一个数看看该数组是否存在此数,并且求出下标,如果没有就提示"没有这个数"。

案例2:优化,查找全部满足条件的下标


课后思考题: {1,8, 10, 89, 1000, 1000,1234} 当一个有序数组中,有多个相同的数值时,如何将所有的数值都查找到,比如这里的 1000.

package search;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

public class BinarySearch {

public static void main(String[] args) {

// 注意:使用二分查找的前提是数组有序的

int[] arr = {1, 8, 10, 89, 1000, 1000, 1234};

// int index = binarySearch1(arr, 0, arr.length - 1, 895);

// System.out.println("index = " + index);

ArrayList resultIndexList = binarySearch(arr, 0, arr.length - 1, 1000);

if (resultIndexList.size() == 0) {

System.out.println(“没有找到”);

} else {

for (int index:resultIndexList) {

System.out.print(index + " ");

}

}

}

/**

  • (从小到大数组)二分查找算法

  • @param arr 数组

  • @param left 左边的索引

  • @param right 右边的索引

  • @param findValue 要查找的值

  • @return 如果找到返回下标,如果没有找到,返回-1

*/

public static int binarySearch1(int[] arr, int left, int right, int findValue) {

// 当left > right 时候,说明递归了整个数组,但是没有找到

if (left > right) {

return -1;

}

int mid = (left + right) / 2;

int midVal = arr[mid];

if (findValue > arr[mid]) { // 向右递归

return binarySearch1(arr, mid + 1, right, findValue);

} else if (findValue < arr[mid]) {

return binarySearch1(arr, left, mid - 1, findValue);

} else {

return mid;

}

}

/**

  • (从小到大数组)二分查找算法

  • 优化 查找全部可能的下标

  • 思路分析:

    1. 在找到mid值时,不要马上返回
    1. 向mid索引值的左边扫描,将所有满足条件的结果值的下标加入一个集合中
    1. 向mid索引值的右边扫描,将所有满足条件的结果值的下标加入一个集合中
    1. 返回结果值
  • @param arr 数组

  • @param left 左边的索引

  • @param right 右边的索引

  • @param findValue 要查找的值

  • @return 如果找到返回下标,如果没有找到,返回-1

*/

public static ArrayList binarySearch(int[] arr, int left, int right, int findValue) {

// 当left > right 时候,说明递归了整个数组,但是没有找到

if (left > right) {

return new ArrayList();

}

int mid = (left + right) / 2;

int midVal = arr[mid];

if (findValue > midVal) { // 向右递归

return binarySearch(arr, mid + 1, right, findValue);

} else if (findValue < midVal) {

return binarySearch(arr, left, mid - 1, findValue);

} else {

ArrayList resultIndexList = new ArrayList();

// 向mid索引值的左边扫描,将所有满足条件的结果值的下标加入一个集合中

int temp = mid - 1;

while (true) {

if (temp < 0 || arr[temp] != findValue) { // 退出

break;

}

// 否则,将temp放入到resultIndexList

resultIndexList.add(temp);

temp -= 1;// temp左移

}

resultIndexList.add(mid);

//向mid索引值的右边扫描,将所有满足条件的结果值的下标加入一个集合中

temp = mid + 1;

while (true) {

if (temp > arr.length - 1 || arr[temp] != findValue) { // 退出

break;

}

// 否则,将temp放入到resultIndexList

resultIndexList.add(temp);

temp += 1;// temp右移

}

return resultIndexList;

}

}

}

插值查找


插值查找原理介绍:

  1. 插值查找算法类似于二分查找,不同的是插值查找每次从自适应mid处开始查找。

  2. 将折半查找中的求mid 索引的公式 , low 表示左边索引left, high表示右边索引right.key 就是前面我们讲的 findVal

在这里插入图片描述

  1. int mid = low + (high - low) * (key - arr[low]) / (arr[high] - arr[low]) ;插值索引

对应前面的代码公式:int mid = left + (right – left) * (findVal – arr[left]) / (arr[right] – arr[left])

  1. 举例说明插值查找算法 1-100 的数组.

在这里插入图片描述

插值查找应用案例:

请对一个有序数组进行插值查找 {1,8, 10, 89, 1000, 1234} ,输入一个数看看该数组是否存在此数,并且求出下标,如果没有就提示"没有这个数"。

package search;

import java.util.Arrays;

public class InsertValueSearch {

public static void main(String[] args) {

int[] arr = new int[100];

for (int i = 0; i < 100; i++) {

arr[i] = i + 1;

}

// System.out.println(Arrays.toString(arr));

int index = insertValueSearch(arr,0,arr.length-1,100);

System.out.println(index);

}

/**

  • 插值查找算法

  • 插值查找算法也要求数组有序

  • @param arr 数组

  • @param left 左边索引

  • @param right 右边索引

  • @param findValue 查找的值

  • @return 找到返回下标,找不到返回-1

*/

public static int insertValueSearch(int[] arr, int left, int right, int findValue) {

// findValue < arr[0] || findValue > arr[arr.length - 1] 必须有

// 否则我们得到的mid可能越界

if (left > right || findValue < arr[0] || findValue > arr[arr.length - 1]) {

return -1;

}

// 求出mid

int mid = left + (right - left) * (findValue - arr[left]) / (arr[right] - arr[left]);

int midVal = arr[mid];

if (findValue > midVal) {

return insertValueSearch(arr, mid + 1, right, findValue);

} else if (findValue < midVal) {

return insertValueSearch(arr, left, mid - 1, findValue);

} else{

return mid;

}

}

}

插值查找注意事项:

  1. 对于数据量较大,关键字分布比较均匀的查找表来说,采用插值查找, 速度较快.

  2. 关键字分布不均匀的情况下,该方法不一定比折半查找要好

斐波那契(黄金分割法)查找基本介绍


  1. 黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个神奇的数字,会带来意向不大的效果。

在这里插入图片描述

  1. 斐波那契数列 {1, 1, 2, 3, 5, 8, 13, 21, 34, 55 } 发现斐波那契数列的两个相邻数 的比例,无限接近 黄金分割值0.618

斐波那契(黄金分割法)原理


  1. 斐波那契查找原理与前两种相似,仅仅改变了中间结点(mid)的位置,mid不再是中间或插值得到,而是位于黄金分割点附近,即mid=low+F(k-1)-1(F代表斐波那契数列),如下图所示

在这里插入图片描述

  1. 对F(k-1)-1的理解:

由斐波那契数列 F[k]=F[k-1]+F[k-2] 的性质,可以得到 (F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1 。该式说明:只要顺序表的长度为F[k]-1,则可以将该表分成长度为F[k-1]-1和F[k-2]-1的两段,即如上图所示。从而中间位置为mid=low+F(k-1)-1

  1. 类似的,每一子段也可以用相同的方式分割

但顺序表长度n不一定刚好等于F[k]-1,所以需要将原来的顺序表长度n增加至F[k]-1。这里的k值只要能使得F[k]-1恰好大于或等于n即可,由以下代码得到,顺序表长度增加后,新增的位置(从n+1到F[k]-1位置),都赋为n位置的值即可。

在这里插入图片描述

斐波那契查找应用案例:


请对一个有序数组进行斐波那契查找 {1,8, 10, 89, 1000, 1234} ,输入一个数看看该数组是否存在此数,并且求出下标,如果没有就提示"没有这个数"。

最后

由于文案过于长,在此就不一一介绍了,这份Java后端架构进阶笔记内容包括:Java集合,JVM、Java并发、微服务、SpringNetty与 RPC 、网络、日志 、Zookeeper 、Kafka 、RabbitMQ 、Hbase 、MongoDB、Cassandra 、Java基础、负载均衡、数据库、一致性算法、Java算法、数据结构、分布式缓存等等知识详解。

image

本知识体系适合于所有Java程序员学习,关于以上目录中的知识点都有详细的讲解及介绍,掌握该知识点的所有内容对你会有一个质的提升,其中也总结了很多面试过程中遇到的题目以及有对应的视频解析总结。

image

image

《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》点击传送门,即可获取!
示"没有这个数"。

最后

由于文案过于长,在此就不一一介绍了,这份Java后端架构进阶笔记内容包括:Java集合,JVM、Java并发、微服务、SpringNetty与 RPC 、网络、日志 、Zookeeper 、Kafka 、RabbitMQ 、Hbase 、MongoDB、Cassandra 、Java基础、负载均衡、数据库、一致性算法、Java算法、数据结构、分布式缓存等等知识详解。

[外链图片转存中…(img-vh6HCXoB-1714692339499)]

本知识体系适合于所有Java程序员学习,关于以上目录中的知识点都有详细的讲解及介绍,掌握该知识点的所有内容对你会有一个质的提升,其中也总结了很多面试过程中遇到的题目以及有对应的视频解析总结。

[外链图片转存中…(img-37LLgzA3-1714692339500)]

[外链图片转存中…(img-QDnYV3r2-1714692339500)]

《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》点击传送门,即可获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值