小白玩机器学习(4)--- 用迁移学习做回归 预测待检测目标的位置(2)


addButton = createButton('Add');

addButton.mousePressed(function(){

    classifier.addImage(slider.value());

});

(4)使用一个方块来显示移动物体的位置


rectMode(CENTER);  // 图形为矩形且位于中心位置

fill(255, 0, 255);   // 填充颜色

rect(name * width, height / 2 , 50 , 50);   // 位置信息:水平位置,垂直位置(中间),长,宽

2. 修改变为物体的二维追踪

(1)添加模型


// 声明两个模型分别对x轴和y轴

featureExtractorx = ml5.featureExtractor('MobileNet', modelReady);

featureExtractory = ml5.featureExtractor('MobileNet', modelReady);

(2)响应都修改为二维


// 当每次点击Add就添加一次训练样本

    select('#addSample').mousePressed(function(){

        classifierx.addImage(sliderx.value());

        classifiery.addImage(slidery.value());

        select('#amountOfSamples').html(samples++);

        console.log("添加样本(x,y):(" + sliderx.value() + "," + slidery.value() + ")");

    });

    // 训练样本按钮

    select('#train').mousePressed(function(){

         classifierx.train(whileTrainingx);

         classifiery.train(whileTrainingy);

     });



classifierx.predict(capture, GetResultx);   // predict

   classifiery.predict(capture, GetResulty);   // predict



rect(namex * width, namey * height , 30 , 30);

(3)页面样式优化


    slidery.elt.style.transform = "rotate(90deg)";  // 转化为垂直

    slidery.elt.style.marginLeft = "-150px";

    slidery.elt.style.height = "400px";

    slidery.elt.style.width = "340px"

三、实验结果

滑动条滑动到不同位置,添加样本,尽可能多加入一些样本,保证预测的准确性。之后点击train开始训练

等loss都为NULL时,点击predict按钮开始测试,并实时输出预测坐标值

四、总结提升

最后

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数初中级Android工程师,想要提升技能,往往是自己摸索成长,自己不成体系的自学效果低效漫长且无助。

因此收集整理了一份《2024年Web前端开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Android开发知识点!不论你是刚入门Android开发的新手,还是希望在技术上不断提升的资深开发者,这些资料都将为你打开新的学习之门!

如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
**

如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值