2024年最全从JDK源码学习Hashmap,这样说我就懂了,前端开发核心知识笔记共2100页

总结一下

面试前要精心做好准备,简历上写的知识点和原理都需要准备好,项目上多想想难点和亮点,这是面试时能和别人不一样的地方。

还有就是表现出自己的谦虚好学,以及对于未来持续进阶的规划,企业招人更偏爱稳定的人。

开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】

万事开头难,但是程序员这一条路坚持几年后发展空间还是非常大的,一切重在坚持。

为了帮助大家更好更高效的准备面试,特别整理了《前端工程师面试手册》电子稿文件。

前端面试题汇总

JavaScript

性能

linux

前端资料汇总

前端工程师岗位缺口一直很大,符合岗位要求的人越来越少,所以学习前端的小伙伴要注意了,一定要把技能学到扎实,做有含金量的项目,这样在找工作的时候无论遇到什么情况,问题都不会大。

e = p;
//若仅仅键的hash一样,但是key并不一样则首先判断是否是红黑树节点,如果是的话则将当前的键放进红黑树中,更新当前的hash表的冲突节点
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//否则当前节点为链表
else {
//遍历链表(因为我们之前已经知道每个node节点都存储了下一个节点的地址,所以P.next变量即代表相对于当前node的下一个node,那么遍历到一个链表的尾部放入新的节点即可)
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st //放入后判断,如果当前hash表的长度>=7,则将当前hash位置处转为红黑树表示从而替换链表表示
treeifyBin(tab, hash);
break;
}
//如果遍历过程中发现链表中存在相同的key则break退出
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e; //否则更新p节点为e,从而实现循环遍历链表
}
}
//如果保存冲突节点的e变量不为null,则取冲突的值,根据onlyIfAbsent没有设置或者当前value为null,都将
if (e != null) { // existing mapping for key
V oldValue = e.value; //取到冲突节点的value
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount; //hashmap修改次数,防止多线程冲突的
if (++size > threshold) //判断当前node节点的多少有没有到扩容的阈值
resize();
afterNodeInsertion(evict);
return null;
}

所以整个put的流程为:

①.首先根据要放入的key计算hash,然后根据hash获取table中的放入位置,如果当前table为空,则进行初始化

②.判断放入位置是否为空,为空则直接放入,否则判断是否为红黑树节点,不是则为链表,则遍历链表查找是否存在相同的key,没找到则放入链表尾部并判断是否需要转为红黑树(TREEIFY_THRESHOLD)

③.若查找链表找到相同key则替换,放入后要判断node节点数是否超过threshold,判断是否需要resize

resize方法,扩充当前容量:

final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table; //保存旧的hash表
int oldCap = (oldTab == null) ? 0 : oldTab.length; //判断hash表的长度,若是第一次初始化则为0
int oldThr = threshold; //取旧的阈值
int newCap, newThr = 0; //定义新的长度和阈值
if (oldCap > 0) { //如果之前长度大于零
if (oldCap >= MAXIMUM_CAPACITY) { //如果之前的长度大于等于2的30次
threshold = Integer.MAX_VALUE; //则将node节点阈值设置为2的31次-1
return oldTab; //返回旧的hash表,不再扩容
}
//否则满足扩容条件,进行扩容
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && //如果旧的容量扩大一倍小于2的30次并且旧的容量大于默认的初始化容量大小16,阈值也变为原来的2倍
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold 则容量扩大一倍
}
//如果旧的容量为0,但是旧的阈值大于零,则可能是初始化hashmap时指定了容量,则直接将新的容量设置为旧的阈值
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
//对于没有设置初始容量的情况
else { // zero initial threshold signifies using defaults //如果是第一次初始化,则设置容量为16,阈值为160.75=12,即hashmap可以放12个node节点
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//如果新的阈值为0,则进行修正,令新的阈值为新的hash表容量长
负载因子
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//设置完新的容量和新的阈值后,则开始进项node节点元素转移
threshold = newThr; //先将新生成的阈值赋值给成员变量threshold
@SuppressWarnings({“rawtypes”,“unchecked”})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; //然后声明一个新的节点数组,容量即为扩充后的大小
table = newTab; //替换成员标量table为新表
if (oldTab != null) { //遍历旧的容量大小,取其每个node节点
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) { //如果该节点不为null
oldTab[j] = null; //则让旧表的该位置为null,进行垃圾回收
if (e.next == null) //如果当前遍历的节点下一个为null,说明为尾节点(单个node节点,无链表,无红黑树)
newTab[e.hash & (newCap - 1)] = e; //则直接将该节点放到新的hash表中
//如果下一个节点不为null,则判断当前节点是否是红黑树节点,若是,则将新标的该节点转为红黑树节点
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//否则为单链表节点,则遍历当前链中的节点决定要放入新hash表的位置
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;

do {
next = e.next;
if ((e.hash & oldCap) == 0) { if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}

这里设计很妙,原来的容量为2的次方,则只有1位为1,原来的下标是容量-1,则新增的一位bit,决定了节点hash新增的一位为1还是为0,来决定其存放位置,其也为随机的,从而均匀地将节点放到新的hash表中,新增一位为0则放到低位中,即索引值不变,新增一位为1,则放到高位中,这样原本在一条链中的节点就能够分布到两条链上,也减少了搜索的开销

jdk1.7和1.8的Hashmap区别

1.jdk1.7中发生hash冲突新节点采用头插法,1.8采用的为尾插法

2.1.7采用数组+链表,1.8采用的是数组+链表+红黑树

3.1.7在插入数据之前扩容,而1.8插入数据成功之后扩容

总结

1.在算key的hash时将key的hashcode和与hashcode的高16位做异或降低hash冲突概率

2.HashMap 的 bucket (数组)大小一定是2的n次方,便于后面等效取模以及resize时定节点分布(low或者high)

3.HashMap 在 put 的元素数量大于 Capacity * LoadFactor(默认16 * 0.75)=12 之后会进行扩容,负载因子大于0.75则会减小空间开销,

4.影响hashmap性能的两个参数就是负载因子和初始容量,扩容影响性能,因此最好能提前根据负载因此估算hashmap大小,扩容实际上是将当前node节点放入一个新的node数组

5.tab[i = (n - 1) & hash] 实际上用与运算代替取模操作,性能更好,n即为容量大小,n为2的次方,则n-1则其二进制位为全1,从而代替模运算,e.hash & oldCap 用与运算决定hash增加的一位为0或者为1

关于负载因子设置:

负载因子的大小决定了HashMap的数据密度。
负载因子越大密度越大,发生碰撞的几率越高,数组中的链表越容易长,造成查询或插入时的比较次数增多,性能会下降。
负载因子越小,就越容易触发扩容,数据密度也越小,意味着发生碰撞的几率越小,数组中的链表也就越短,查询和插入时比较的次数也越小,性能会更高。但是会浪费一定的内容空间。而且经常扩容也会影响性能,建议初始化预设大一点的空间。

最后

一个好的心态和一个坚持的心很重要,很多冲着高薪的人想学习前端,但是能学到最后的没有几个,遇到困难就放弃了,这种人到处都是,就是因为有的东西难,所以他的回报才很大,我们评判一个前端开发者是什么水平,就是他解决问题的能力有多强。

开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】

分享一些前端面试题以及学习路线给大家

前端开发者是什么水平,就是他解决问题的能力有多强。

开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】

分享一些前端面试题以及学习路线给大家

[外链图片转存中…(img-xpkGhuSn-1715050179192)]

[外链图片转存中…(img-CA9fPWkw-1715050179193)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值