- 博客(22)
- 收藏
- 关注
原创 Python数据结构 (6):二叉树(Binary Tree)
本文系统介绍了二叉树的核心概念和Python实现方法。首先阐述了二叉树的定义、关键术语(根节点、叶子节点、子树等)和常见分类(满二叉树、完全二叉树等)。随后详细展示了如何通过节点类手动构建二叉树,并重点讲解了四种遍历方式:前序、中序、后序(深度优先)和层序(广度优先),分别给出了递归和迭代的实现代码。文章强调完全二叉树适合数组存储,并指出递归遍历在大深度树中可能引发的问题及迭代解决方案。该内容为后续学习高级树形结构奠定了重要基础。
2025-09-16 19:43:21
699
1
原创 Python数据结构 (5):哈希表(Hash Table)
哈希表通过哈希函数实现键到地址的直接映射,达到O(1)查询效率。核心在于:1)哈希函数将键转换为整数哈希值并取模定位桶地址;2)冲突不可避免,常用链地址法(冲突键挂链表)和开放地址法(线性/二次探测);3)Python采用链地址法,当负载因子>0.7时自动扩容。手动实现的哈希表包含初始化、插入(自动扩容)、查找、删除等操作,通过数组+链表结构模拟了字典的底层机制。哈希表是高效查找场景的首选数据结构。
2025-09-16 19:42:22
719
1
原创 Python数据结构 (4):链表(Linked List)
本文系统讲解了链表的实现与应用。通过对比数组与链表的特性差异,突出链表在动态数据操作中的优势(插入/删除O(1))。重点实现了单链表的核心功能:节点类定义、初始化、判空、遍历,以及头插/尾插/指定位置插入、按值删除和查找操作。代码示例包含详细注释,演示了创建链表、增删查改等操作,并附测试案例验证功能。链表通过离散内存和指针连接实现高效数据管理,特别适合频繁修改的场景。
2025-09-14 10:27:18
842
原创 Python数据结构 (3):队列(Queue)
本文介绍了队列(Queue)这一遵循“先进先出”(FIFO)原则的线性数据结构。通过银行排队的类比说明了队列的基本操作(入队、出队、查看队头、判空),并强调Python中应使用collections.deque而非列表来实现高效队列操作。文章提供了基础队列和有界队列的Python实现代码,分析了队列操作的时间复杂度优势,最后以二叉树层级遍历为例展示了队列在广度优先搜索(BFS)中的经典应用。队列的顺序处理特性使其成为任务调度、消息传递等场景的核心工具。
2025-09-14 10:04:23
1024
原创 Python数据结构 (2):栈(Stack)
本文介绍了栈(Stack)这一经典数据结构及其Python实现。栈遵循"后进先出"(LIFO)原则,支持push、pop、peek和isEmpty等核心操作。文章展示了两种Python实现方式:基于列表的简易实现和基于collections.deque的高效实现,并分析了栈操作均为O(1)时间复杂度的优势。典型应用场景包括括号匹配验证和浏览器前进后退功能等,通过实际代码示例演示了栈的核心特性。栈的高效性和简单接口使其成为算法设计和实际开发中的重要工具。
2025-09-14 08:24:32
913
1
原创 Python数据结构 (1):数组(List)
本文介绍了Python列表(List)的核心特性与实用操作。作为增强版动态数组,Python列表相比传统数组更灵活,支持混合类型、动态扩容等特性。文章详细讲解了列表的创建、访问、增删改查等基础操作,并分析了时间复杂度。特别指出浅拷贝与深拷贝的区别,提醒注意可变元素的陷阱。最后列举了列表在数据存储和算法中的典型应用场景,帮助开发者高效使用这一基础数据结构。
2025-09-14 07:47:08
692
1
原创 Python从入门到实战 (13):自动化办公:用 Python 批量处理 Excel、Word 与 PDF
办公自动化实战:Python批量处理Excel/Word/PDF 本文介绍Python实现办公自动化的3个核心场景: 1️⃣ Excel批量处理:用pandas计算销售完成率并标记达标,自动调整格式保存 2️⃣ Word批量生成:基于模板和占位符自动生成工资条等文档 3️⃣ PDF数据处理:提取文本/表格内容并汇总(未展开) 关键优势: ✔️ 代码复用:提供可直接运行的完整代码 ✔️ 效率提升:1小时工作缩至1分钟 ✔️ 减少错误:自动化处理避免人工失误 准备工作:安装pandas/openpyxl/pyt
2025-09-13 21:20:19
864
1
原创 Python从入门到实战 (12):API 接口调用:规范获取官方数据
摘要:本文介绍了通过API接口获取数据的方法,对比爬虫的优势包括结构化数据、稳定高效和合规安全。以高德天气API为例,详细讲解了从申请API Key、解读文档到Python代码实现的全流程,包括构造GET请求、解析JSON响应和错误处理。核心步骤是通过requests库发送请求,检查HTTP状态码和业务状态码,提取所需天气数据。相比爬虫,API调用更简洁可靠,适合获取官方提供的标准化数据。
2025-09-13 20:17:40
828
1
原创 Python从入门到实战 (11):爬虫入门:用 Requests + BeautifulSoup 爬取网页数据
这篇文章介绍了如何使用Python进行网页爬虫入门,重点讲解了爬取豆瓣电影Top250数据的完整流程。主要内容包括: 爬虫基础概念:解释了爬虫的定义、合法性判断标准及常用工具(Requests+BeautifulSoup) 实战步骤: 发送请求:配置请求头模拟浏览器访问 解析数据:使用BeautifulSoup提取电影信息 多页爬取:循环获取10页数据 数据保存:将结果存入Excel 关键技巧: 通过开发者工具获取网页结构 异常处理和日志记录 遵守robots协议 模拟浏览器请求头 文章采用循序渐进的方式,
2025-09-13 20:08:42
455
1
原创 Python从入门到实战 (10):实战入门:用 Python 做数据统计与可视化
本文介绍了如何利用Python的pandas和matplotlib库实现学生成绩数据的分析与可视化。主要内容包括:1)安装所需第三方库;2)准备Excel格式的学生成绩数据;3)通过pandas读取数据并处理异常;4)计算各科平均分、最高分、及格率等核心指标;5)使用matplotlib生成多种可视化图表。文章提供了完整的代码示例,涵盖数据读取、异常处理、统计分析等关键环节,帮助读者完成第一个Python实战项目,将基础知识综合应用于实际场景。
2025-09-13 13:31:24
662
1
原创 Python从入门到实战 (9):异常处理与调试:让程序更健壮
本文介绍了Python异常处理和调试的核心技能。异常处理通过try-except结构捕获运行时错误,避免程序崩溃,支持多异常捕获、自定义异常和资源清理(finally)。调试方法包括print打印变量、logging模块记录日志、以及IDE断点调试(VS Code为例),帮助定位逻辑错误。这些技术能让程序从"能跑"变为"健壮可靠",提升代码质量。
2025-09-12 19:54:24
809
1
原创 Python从入门到实战 (8):面向对象编程:类与对象的核心用法
本文介绍了面向对象编程(OOP)的核心概念及应用。主要内容包括: 类与对象:类是抽象模板(如"手机类"),对象是具体实例(如"iPhone 15")。 类的定义:使用class关键字,包含__init__构造方法(初始化属性)和实例方法(定义行为)。 属性与方法:区分实例属性(对象独有)和类属性(共享),以及实例方法、类方法(@classmethod)和静态方法(@staticmethod)。 OOP三大特性:封装(整合属性与方法)、继承(子类复用父类代码)和多态(入
2025-09-12 19:43:02
648
1
原创 Python从入门到实战 (7):模块与包:代码组织的核心方式
本文介绍了Python模块和包的概念及使用方法。模块是包含函数、变量的.py文件,用于代码拆分、复用和避免命名冲突。包是模块的文件夹,通过__init__.py标识。文章详细讲解了三种模块导入方式:导入整个模块、导入指定内容、使用别名,并介绍了标准库模块如os、time、random的使用。最后通过一个学生成绩管理工具案例,展示了如何用包和模块组织项目结构,实现代码的模块化管理。
2025-09-12 19:37:10
1037
1
原创 Python从入门到实战 (6):函数:代码复用的核心工具
本文介绍了Python函数的基础知识,包括函数定义、调用、参数传递、返回值及作用域。函数是将重复逻辑封装为可调用的代码块,能提高代码复用性和可维护性。主要内容包括:1)函数定义使用def关键字,包含参数和返回值;2)参数传递方式(位置参数、默认参数、关键字参数);3)返回值处理;4)变量作用域规则。最后通过一个学生成绩分析案例,演示了如何用函数封装具体功能。掌握函数是编写高效Python代码的关键步骤。
2025-09-12 19:29:47
982
1
原创 Python从入门到实战 (5):字典的核心用法与集合应用
本文介绍了Python中字典(dict)和集合(set)两种数据结构及其核心用法。字典是键值对映射结构,适用于通过键快速查找值,支持创建、查找、增删改等操作;集合是无序且不重复的数据容器,主要用于去重和数学运算。文章通过对比列表、字典和集合的特性,帮助读者理解不同结构的适用场景,并提供了学生成绩处理的实际案例,展示了如何利用这两种数据结构解决实际问题。掌握字典和集合能够显著提升数据处理效率,特别是在关联查询和去重需求方面。
2025-09-12 19:23:55
733
1
原创 Python从入门到实战 (4):列表与元组的核心用法
本文介绍了Python中两种存储多个数据的容器:列表(list)和元组(tuple)。列表使用方括号[],可动态增删改元素,适用于需要频繁修改的数据;元组使用圆括号(),创建后不可修改,适合存储固定数据。文章详细讲解了列表的创建、增删改查操作及常用函数,以及元组的创建和查询操作,并通过学生成绩案例展示了二者的实际应用。关键区别在于列表可变、元组不可变,选择依据取决于数据是否需要修改。最后预告了下一篇将介绍字典这一键值对数据结构。
2025-09-09 20:38:33
340
1
原创 Python从入门到实战 (3):流程控制语句(if 判断与循环)
本文介绍了Python中的流程控制语句,主要包括if判断和循环结构。if判断通过if/if-else/if-elif-else实现条件选择;循环分为for循环(适合已知次数的遍历)和while循环(适合条件循环),并介绍了break和continue控制循环流程。最后通过猜数字游戏案例综合运用了这些知识。掌握流程控制可以让代码实现更复杂的逻辑判断和重复操作,为后续学习数据结构打下基础。
2025-09-09 20:33:40
883
1
原创 Python从入门到实战 (2):变量、数据类型与运算符
本文介绍了Python编程的三个基础概念:变量、数据类型和运算符。变量用于存储数据,命名需遵循字母、数字、下划线组合且不以数字开头的规则。Python核心数据类型包括整数(int)、浮点数(float)、字符串(str)和布尔值(bool)。运算符分为算术运算符(如+-*/)、比较运算符(如== !=)和赋值运算符(如+= -=)。文章通过创建个人信息计算器的实战案例,展示了如何综合运用这些基础知识进行输入、计算和输出操作。掌握这些基础内容后,就能编写简单的Python程序,为学习更复杂的流程控制打下基础。
2025-09-09 20:21:20
849
1
原创 Python从入门到实战 (1):Python 环境搭建
本文详细介绍了Python开发环境的搭建流程,包括操作系统适配的Python安装指南(Windows/macOS/Linux)、主流IDE推荐(VS Code和PyCharm)以及虚拟环境创建方法。重点强调了正确配置环境的重要性,如添加PATH变量、版本隔离等常见问题解决方案,并提供了新手友好的命令行操作和测试验证步骤。通过分步指导帮助初学者快速建立规范的Python开发环境,为后续学习打下基础。
2025-09-09 20:20:13
830
1
原创 Markdown 编辑器大盘点
本文全面对比了主流Markdown编辑器的优缺点及适用场景。在线编辑器包括简书、知乎、博客园等平台,适合轻量创作和社交分享;独立软件如Typora、MarkText等提供专业写作体验;笔记类软件如思源笔记、Notion等则整合了知识管理功能。文章从功能特性、使用成本、平台限制等维度进行分析,帮助用户根据自身需求(如技术写作、团队协作或个人知识管理)选择最适合的工具,平衡功能深度与使用便捷性。
2025-09-08 20:12:02
813
1
原创 Markdown 数学公式大全:语法知识点梳理
该指南是一份覆盖全面的 Markdown 数学公式实用手册,包含近百个公式示例,从基础的行内 / 独立公式插入、数字字母运算符,到进阶的上下标、分式、根号指数,再到专业的求和积分、矩阵行列式,以及三角函数、逻辑符号等特殊符号用法,知识点贯穿简单到复杂场景。同时附带公式排版技巧(如括号自适应、换行对齐)与平台兼容性提示,示例均配可直接复制的代码与渲染效果,能满足学生、科研人员、程序员等不同群体的公式排版需求。
2025-09-08 19:36:37
1246
1
原创 Markdown 语法大全:从入门到精通的完整指南
本文详细介绍了Markdown语法的基础和进阶用法,包括:1.基础文本格式(标题、字体、引用);2.内容结构排版(列表、分割线、代码块);3.进阶元素(链接、图片、表格);4.高级扩展功能(任务列表、脚注、数学公式)。通过清晰的分级说明和示例代码,帮助读者快速掌握Markdown的核心语法规则,提升文档排版效率。特别提示部分功能需编辑器支持,建议根据实际需求选择合适的语法组合。
2025-09-07 17:06:46
1688
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人