先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
正文
memory usage: 141.8+ KB
转换 Date的类型
df[‘Date’] = pd.to_datetime(df.Date, dayfirst=True)
索引重置 让Date时间格式成为 索引 inplace新建对象
df.set_index(‘Date’, inplace=True)
df
| | Open | High | Low | Close | Adj Close | Volume |
| — | — | — | — | — | — | — |
| Date | | | | | | |
| 2014-09-17 | 0.000293 | 0.000299 | 0.000260 | 0.000268 | 0.000268 | 1.463600e+06 |
| 2014-09-18 | 0.000268 | 0.000325 | 0.000267 | 0.000298 | 0.000298 | 2.215910e+06 |
| 2014-09-19 | 0.000298 | 0.000307 | 0.000275 | 0.000277 | 0.000277 | 8.835630e+05 |
| 2014-09-20 | 0.000276 | 0.000310 | 0.000267 | 0.000292 | 0.000292 | 9.930040e+05 |
| 2014-09-21 | 0.000293 | 0.000299 | 0.000284 | 0.000288 | 0.000288 | 5.391400e+05 |
| … | … | … | … | … | … | … |
| 2021-10-16 | 0.233881 | 0.244447 | 0.233683 | 0.237292 | 0.237292 | 1.541851e+09 |
| 2021-10-17 | 0.237193 | 0.241973 | 0.226380 | 0.237898 | 0.237898 | 1.397143e+09 |
| 2021-10-18 | 0.237806 | 0.271394 | 0.237488 | 0.247281 | 0.247281 | 5.003366e+09 |
| 2021-10-19 | NaN | NaN | NaN | NaN | NaN | NaN |
| 2021-10-20 | 0.245199 | 0.246838 | 0.242384 | 0.246078 | 0.246078 | 1.187871e+09 |
2591 rows × 6 columns
df = df.asfreq(‘d’) # 按照天数采集数据
df = df.fillna(method=‘bfill’) # 缺失值填充 下一条数据填充
df
| | Open | High | Low | Close | Adj Close | Volume |
| — | — | — | — | — | — | — |
| Date | | | | | | |
| 2014-09-17 | 0.000293 | 0.000299 | 0.000260 | 0.000268 | 0.000268 | 1.463600e+06 |
| 2014-09-18 | 0.000268 | 0.000325 | 0.000267 | 0.000298 | 0.000298 | 2.215910e+06 |
| 2014-09-19 | 0.000298 | 0.000307 | 0.000275 | 0.000277 | 0.000277 | 8.835630e+05 |
| 2014-09-20 | 0.000276 | 0.000310 | 0.000267 | 0.000292 | 0.000292 | 9.930040e+05 |
| 2014-09-21 | 0.000293 | 0.000299 | 0.000284 | 0.000288 | 0.000288 | 5.391400e+05 |
| … | … | … | … | … | … | … |
| 2021-10-16 | 0.233881 | 0.244447 | 0.233683 | 0.237292 | 0.237292 | 1.541851e+09 |
| 2021-10-17 | 0.237193 | 0.241973 | 0.226380 | 0.237898 | 0.237898 | 1.397143e+09 |
| 2021-10-18 | 0.237806 | 0.271394 | 0.237488 | 0.247281 | 0.247281 | 5.003366e+09 |
| 2021-10-19 | 0.245199 | 0.246838 | 0.242384 | 0.246078 | 0.246078 | 1.187871e+09 |
| 2021-10-20 | 0.245199 | 0.246838 | 0.242384 | 0.246078 | 0.246078 | 1.187871e+09 |
2591 rows × 6 columns
In [14]:
开盘价的分布情况
df[‘Open’].plot(figsize=(12, 8))
结论:从上图可以看出 BTB是在2021年份开始爆发式的增长 在2015 到 2021 一直都是没有较大波动
成交情况
df[‘Volume’].plot(figsize=(12, 8))
投资价值
df[‘Total Pos’] = df.sum(axis=1)
df[‘Total Pos’].plot(figsize=(10, 8))
结论:开盘价高 投资价值搞 比较合适做卖出操作 实现一夜暴富(开玩笑的)
当前元素与先前元素的相差百分比
df[‘Daily Reture’] = df[‘Total Pos’].pct_change(1)
日收益率的平均
df[‘Daily Reture’].mean()
df[‘Daily Reture’].plot(kind=‘kde’)
SR = df[‘Daily Reture’].mean() / df[‘Daily Reture’].std()
all_plot = df/df.iloc[0]
all_plot.plot(figsize=(24, 16))
df.hist(bins=100, figsize=(12, 6))
按照年份进行采样
df.resample(rule=‘A’).mean()
| | Open | High | Low | Close | Adj Close | Volume | Total Pos | Daily Reture |
| — | — | — | — | — | — | — | — | — |
| Date | | | | | | | | |
| 2014-12-31 | 0.000249 | 0.000259 | 0.000240 | 0.000248 | 0.000248 | 8.059213e+05 | 8.059213e+05 | 1.028630 |
| 2015-12-31 | 0.000143 | 0.000147 | 0.000139 | 0.000143 | 0.000143 | 1.685476e+05 | 1.685476e+05 | 0.139461 |
| 2016-12-31 | 0.000235 | 0.000242 | 0.000229 | 0.000235 | 0.000235 | 2.564834e+05 | 2.564834e+05 | 0.259038 |
| 2017-12-31 | 0.001576 | 0.001708 | 0.001468 | 0.001601 | 0.001601 | 1.118996e+07 | 1.118996e+07 | 0.225833 |
| 2018-12-31 | 0.004368 | 0.004577 | 0.004125 | 0.004350 | 0.004350 | 2.172325e+07 | 2.172325e+07 | 0.109586 |
| 2019-12-31 | 0.002564 | 0.002631 | 0.002499 | 0.002563 | 0.002563 | 4.463969e+07 | 4.463969e+07 | 0.027981 |
| 2020-12-31 | 0.002736 | 0.002822 | 0.002660 | 0.002744 | 0.002744 | 1.290465e+08 | 1.290465e+08 | 0.052314 |
| 2021-12-31 | 0.200410 | 0.215775 | 0.185770 | 0.201272 | 0.201272 | 4.620961e+09 | 4.620961e+09 | 0.260782 |
年平均收盘价
df[‘Open’].resample(‘A’).mean().plot.bar(title=‘Yearly Mean Closing Price’, color=[‘#b41f7d’])
月度
df[‘Open’].resample(‘M’).mean().plot.bar(figsize=(18, 12), color=‘red’)
分别获取对应时间窗口 6 12 2 均值
df[‘6-month-SMA’] = df[‘Open’].rolling(window=6).mean()
df[‘12-month-SMA’] = df[‘Open’].rolling(window=12).mean()
df[‘2-month-SMA’] = df[‘Open’].rolling(window=2).mean()
df.head(10)
| | Open | High | Low | Close | Adj Close | Volume | Total Pos | Daily Reture | 6-month-SMA | 12-month-SMA | 2-month-SMA |
| — | — | — | — | — | — | — | — | — | — | — | — |
| Date | | | | | | | | | | | |
| 2014-09-17 | 0.000293 | 0.000299 | 0.000260 | 0.000268 | 0.000268 | 1463600.0 | 1.463600e+06 | NaN | NaN | NaN | NaN |
| 2014-09-18 | 0.000268 | 0.000325 | 0.000267 | 0.000298 | 0.000298 | 2215910.0 | 2.215910e+06 | 0.514013 | NaN | NaN | 0.000281 |
| 2014-09-19 | 0.000298 | 0.000307 | 0.000275 | 0.000277 | 0.000277 | 883563.0 | 8.835630e+05 | -0.601264 | NaN | NaN | 0.000283 |
| 2014-09-20 | 0.000276 | 0.000310 | 0.000267 | 0.000292 | 0.000292 | 993004.0 | 9.930040e+05 | 0.123863 | NaN | NaN | 0.000287 |
| 2014-09-21 | 0.000293 | 0.000299 | 0.000284 | 0.000288 | 0.000288 | 539140.0 | 5.391400e+05 | -0.457062 | NaN | NaN | 0.000285 |
| 2014-09-22 | 0.000288 | 0.000301 | 0.000285 | 0.000298 | 0.000298 | 620222.0 | 6.202220e+05 | 0.150391 | 0.000286 | NaN | 0.000291 |
| 2014-09-23 | 0.000298 | 0.000318 | 0.000295 | 0.000313 | 0.000313 | 739197.0 | 7.391970e+05 | 0.191826 | 0.000287 | NaN | 0.000293 |
| 2014-09-24 | 0.000314 | 0.000353 | 0.000310 | 0.000348 | 0.000348 | 1277840.0 | 1.277840e+06 | 0.728687 | 0.000295 | NaN | 0.000306 |
| 2014-09-25 | 0.000347 | 0.000383 | 0.000332 | 0.000375 | 0.000375 | 2393610.0 | 2.393610e+06 | 0.873169 | 0.000303 | NaN | 0.000331 |
| 2014-09-26 | 0.000374 | 0.000467 | 0.000373 | 0.000451 | 0.000451 | 4722610.0 | 4.722610e+06 | 0.973007 | 0.000319 | NaN | 0.000361 |
进行可视化 查看对应分布情况
df[[‘Open’, ‘6-month-SMA’, ‘12-month-SMA’, ‘2-month-SMA’]].plot(figsize=(24, 10))
df[[“Open”,“6-month-SMA”]].plot(figsize=(18,10))
文末有福利领取哦~
👉一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉二、Python必备开发工具
👉三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉 四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
👉五、Python练习题
检查学习结果。
👉六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
8883d84dcc5e58.png)
👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-PjI2NZQj-1713362944028)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!