先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
正文
-
💟新手筛💞
-
- 💙问题分析💙
-
💙代码实现💙
-
💟新手优化筛💞
-
- 💜问题分析💜
-
💜代码实现💜
-
💟埃氏筛💞
-
- 🤍问题分析🤍
-
🤍代码实现🤍
-
💟欧拉筛(线性筛)💞
-
- 💗问题分析💗
-
💗代码实现💗
-
你学废了吗?🦖
========================================================================
素数是我们中学时代就接触过的概念,今天呢我们又提起了他足以见到了他对我们的重要性😻
我们再来重温一下素数(质数)的概念:
素数
:只有两个正因数(1和它本身)的自然数即为质数。比1大但不是素数的数称为合数。
合数
:合数是指在大于1的整数中除了能被1和本身整除外,还能被其他数(0除外)整除的数
你可能会说不就是求解质数吗?有什么难的,我三下五除二就给你解决了。只能说雀食是,对
于数据量较小的质数求解,我们分分钟搞定。但是如果我要求对于2-107以内的素数呢?这可
怎么办107的数据量特定要超时了呀。唉好不容易有一道会写的题还给超时了,真气人😈。
今天呢咱们就带大家学习一下,如何优美的求解出大数据量下的素数。
=============================================================================
将2~n之间所有的素数筛选出来,其中n<=10^6
样例输入:n 一个整数,作为筛选区间的右边界
样例输出:2-n之间的素数个数(包括n)
使用常规方法进行筛选的话会,如果数据规模较小还可以
如果数据规模较大就会很耗费时间。
可以大致分为一下几类:
- 新手筛(朴素筛)
- 新手优化筛
- 埃拉托斯特尼算法(常称为埃氏筛)
- 欧拉筛
测试数据分别为
新手筛 测试数据10^5 阶乘结果9592用时21.401952028274536s
新手优化筛 测试数据10^6 阶乘结果78498用时3.4318480491638184s
埃氏筛
测试数据10^6 阶乘结果78498用时0.27430033683776855s
测试数据10^7 阶乘结果664579用时2.836449384689331s
欧拉筛
测试数据10^6 阶乘结果78498 用时0.6881604194641113s
测试数据10^7 阶乘结果664579用时6.959389925003052s
由此间得,使用筛法可以大大的节约我们的时间,为什么一定要节约时间呢?
通常素数在问题求解中并不是核心算法,所以我们必须对其进行优化,以给核心算法争取更多的时间。🤤
=========================================================================
入门的程序员就应该会,主要考察我们的编程小技巧。以及对素数的理解。😵💫
import time
n=int(1e6)
ans=0
def sieve(n):
for i in range(2,n):
if n%i==0:
return False
return True
start=time.time()
for i in range(2,n):
if sieve(i):
ans+=1
end=time.time()
print(f"阶乘结果{ans}用时{end-start}")
===========================================================================
优化了一下代码,也就是对循环变量的终止条件开了个方。🥳
import time
n=int(1e6)
ans=0
def sieve(n):
for i in range(2,int(math.sqrt(n))+1):
if n%i==0:
return False
return True
start=time.time()
for i in range(2,n):
if sieve(i):
ans+=1
end=time.time()
print(f"阶乘结果{ans}用时{end-start}")
最后
Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
👉Python所有方向的学习路线👈
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉Python必备开发工具👈
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
👉Python全套学习视频👈
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
👉实战案例👈
学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。
因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。
👉大厂面试真题👈
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
nimg.cn/img_convert/99461e47e58e503d2bc1dc6f4668534a.png)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-r8F8uFV1-1713425314004)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!