(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
import json
from json import JSONDecodeError
from shapely.geometry import MultiLineString
2 省级地图
2.1 爬数据
China_sheng = (gpd.read_file(‘https://geo.datav.aliyun.com/areas_v3/bound/100000_full.json’, crs=‘EPSG:4326’)
.query(“name != ‘’”) # 移除南海九段线,这个数据是polygon, 不是linestring
.reindex([‘adcode’, ‘name’, ‘geometry’], axis=1)
.explode(ignore_index=True, index_parts=False) # 拆分
.groupby(by=[‘adcode’, ‘name’])[‘geometry’] # 分组后buffer(0)以消除交叉点
.agg(lambda x: x.buffer(0).unary_union) # 再合并
.reset_index()
.set_crs(crs=‘EPSG:4326’)
)
China_sheng.head()
China_sheng.to_crs(crs=‘EPSG:2381’).plot(column=‘name’, figsize=(10, 15));
2.2 保存到文件
China_sheng.to_file(‘./ChinaMap/阿里云省级.json’)
3 市级地图
3.1 爬数据
%%time
code_sheng = (China_sheng.reindex([‘adcode’, ‘name’], axis=1)
.query(“~name.str.contains(‘台湾|香港|澳门|北京|上海|重庆|天津’)”, engine=‘python’)# 排除7个特别行政区
)
def get_shi_of_sheng(adcode):
return (gpd.read_file(‘https://geo.datav.aliyun.com/areas_v3/bound/’ + str(adcode) + ‘_full.json’,
crs=‘EPSG:4326’)
.explode(ignore_index=True, index_parts=False) # 拆分
.groupby(by=[‘adcode’, ‘name’])[‘geometry’] # 分组后buffer(0)以消除交叉点
.agg(lambda x: x.buffer(0).unary_union) # 再合并
.reset_index()
.set_crs(crs=‘EPSG:4326’)
)
China_shi = []
for code in code_sheng[‘adcode’].values:
sheng_gdf = get_shi_of_sheng(code)
sheng_gdf[‘code_sh’] = code
China_shi.append(sheng_gdf)
China_shi = (pd.concat(China_shi, ignore_index=True).set_index(‘code_sh’)
.join(code_sheng.rename({‘adcode’: ‘code_sh’, ‘name’: ‘name_sh’}, axis=1)
.set_index(‘code_sh’),
how=‘left’)
.reset_index()
.reindex([‘geometry’, ‘adcode’, ‘name’, ‘code_sh’, ‘name_sh’], axis=1)
)
China_shi = (China_sheng.reindex([‘geometry’, ‘adcode’, ‘name’], axis=1)
.query(“name.str.contains(‘台湾|香港|澳门|北京|上海|重庆|天津’)”)
.eval(“code_sh = adcode”)
.eval(“name_sh = name”)
.append(China_shi, ignore_index=True)
)
China_shi.head()
China_shi.to_crs(crs=‘EPSG:2381’).plot(column=‘name’, figsize=(10, 15));
3.2 保存到文件
China_shi.to_file(‘./ChinaMap/阿里云市级.json’)
4 县级地图
4.1 爬数据
%%time
code_shi = (China_shi[[‘adcode’, ‘name’, ‘code_sh’, ‘name_sh’]]
.query(“~name_sh.str.contains(‘台湾|香港|澳门’)”, engine=‘python’)# 排除3个特别行政区
)
def get_xian_of_shi(adcode):
try:
data_json = requests.get(‘https://geo.datav.aliyun.com/areas_v3/bound/’ + str(adcode) + ‘_full.json’).json()
except JSONDecodeError:
data_json = requests.get(‘https://geo.datav.aliyun.com/areas_v3/bound/’ + str(adcode) + ‘.json’).json()
return (gpd.GeoDataFrame.from_features(data_json, crs=‘EPSG:4326’)
.explode(ignore_index=True, index_parts=False) # 拆分
.groupby(by=[‘adcode’, ‘name’])[‘geometry’] # 分组后buffer(0)以消除交叉点
.agg(lambda x: x.buffer(0).unary_union) # 再合并
.reset_index()
.set_crs(crs=‘EPSG:4326’)
)
China_xian = []
for code in code_shi[‘adcode’].values:
shi_gdf = get_xian_of_shi(code)[[‘geometry’, ‘adcode’, ‘name’]]
shi_gdf[‘code_s’] = code
China_xian.append(shi_gdf)
China_xian = (pd.concat(China_xian, ignore_index=True)
.set_index(‘code_s’)
.join(code_shi.rename({‘adcode’: ‘code_s’, ‘name’: ‘name_s’}, axis=1)
.set_index(‘code_s’),
how=‘left’)
.reset_index()
.reindex([‘geometry’, ‘adcode’, ‘name’, ‘code_sh’, ‘name_sh’, ‘code_s’, ‘name_s’], axis=1)
)
China_xian = (China_shi.query(“name_sh.str.contains(‘台湾|香港|澳门’)”, engine=‘python’)
.eval(“code_s = adcode”)
.eval(“name_s = name”)
.append(China_xian, ignore_index=True)
)
China_xian.head()
感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:
① 2000多本Python电子书(主流和经典的书籍应该都有了)
② Python标准库资料(最全中文版)
③ 项目源码(四五十个有趣且经典的练手项目及源码)
④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)
⑤ Python学习路线图(告别不入流的学习)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!