如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
先来说说基金是什么?
首先,对于基金,大致可以分为:货币型基金、债券型基金、混合型基金、股票型基金等等
主要说一下这几个各自是什么,后面我们针对性的用数据去分析。
货币型基金
只投资于货币市场,例如像银行存款,国家或者企业发行的短期债券等,因为波动性较小、风险较低,所以可以等同于储蓄产品一样。
类似的像余额宝就是货币型基金,评价这种货币型基金主要看:七日年化收益率和万份收益。
这个比较容易理解,风险也很低,个人要选择货币型基金就直接余额宝完事,T+0,简简单单。
债券型基金
相比货币型基金,债券型基金投资的债券期限比较长,除了债券,也可以投资股票。
债券基金相对于货币基金有一定的风险,但从长期来看,收益也会更高点。
混合型基金
相比债券型基金,混合型基金除了债券,还可以投资不同风格的股票。
混合型基金根据股票和债券的占比,又细分为 偏股型基金 和配置型基金等等。
相比前两者,混合型基金实现投资的多元化,无需去分别购买风格不同的股票型基金、债券型基金和货币基金。
股票型基金
股票型基金是指投资于股票市场的基金,其中股票仓位不能低于80%。
股票型基金可以细分为主动型和被动型(指数型基金)等,相比主动型,指数型会更稳健些,紧跟大盘指数波动
相比前三者,股票基金属于 高风险高收益类 的基金。
下面来看今天的核心:爬虫+分析
2. 基金数据爬取
爬虫部分的核心代码比较简单,比起上次的租房数据爬取简单了x倍,今天主要 说一下流程就行。
想学习爬虫的同学回头去看租房数据:爬虫实战—拿下最全租房数据 | 附源码
基金数据的爬取小一选择了天天基金网,首页长这样的:
可以看到,对于基金类型:股票、混合、债券和指数都分的一清二楚,采集字段的时候将每个基金所有的收益率情况请拿下来。
ok,那就直接用官网定的标签去爬,采集上图圈出的数据字段。
第二步就是每个基金的详细持仓情况,看图:
主要包括基金的成立时间、规模、基金经理以及每个季度的详细持仓情况。
爬虫大致思路
-
爬取每个基金标签下的所有基金以及收益率情况
-
根据基金代码爬取每个基金得到详细指标
-
根据基金代码爬取每个基金的季度持仓情况
需要说明一下,第 2 步和第 3 步的数据不在一个页面下,第 2 步的数据通过页面解析可以拿到,第 3 步的数据是动态加载后呈现在页面上的,可以通过接口拿到数据。
限于篇幅,主要代码如下:
# 爬取每个基金的数据
rank_detail_data = []
position_data = []
error_funds_list = []
for row_index, data_row in data_rank.iterrows():
fund_code = str(data_row[‘基金代码’])
try:
‘’‘爬取页面,获得该基金的详细数据’‘’
position_title_url = “http://fundf10.eastmoney.com/ccmx_” + str(fund_code[1:]) + “.html”
print(‘正在爬取第 {0}/{1} 个基金 {2} 的详细数据中…’.format(row_index+1, len(data_rank), fund_code[1:]))
response_title = requests.get(url=position_title_url, headers={‘User-Agent’: get_ua()}, timeout=10)
# 解析基金的详细数据
rank_detail_info = resolve_rank_detail_info(fund_code[1:], response_title)
“”“爬取页面,获取该基金的持仓数据”“”
position_data_url = “http://fundf10.eastmoney.com/FundArchivesDatas.aspx?type=jjcc&code=” + \
str(fund_code[1:]) + “&topline=10&year=&month=&rt=” + str(random.uniform(0, 1))
print(‘正在爬取第 {0}/{1} 个基金 {2} 的持仓情况中…’.format(row_index + 1, len(data_rank), fund_code[1:]))
# 解析基金的持仓情况
response_data = requests.get(url=position_data_url, headers={‘User-Agent’: get_ua()}, timeout=10)
fund_positions_data = resolve_position_info(fund_code[1:], response_data.text)
# 保存数据
rank_detail_data.append(rank_detail_info)
position_data.extend(fund_position_data for fund_position_data in fund_positions_data)
except:
error_funds_list.append(fund_code)
print(“{0} 数据爬取失败,稍后会进行重试,请注意!”.format(str(fund_code[1:])))
# 随机休眠2-4 秒
time.sleep(random.randint(2, 4))
爬取完成后,数据是这样的:
3. 基金数据分析
对于4种类型的基金数据,下面主要对 股票型基金进行分析
首先,股票型基金共 1417 个,后面分析和排序的依据均是针对 今年来收益率 这个指标进行的,大家注意下
1. 基本:收益率分布
1417个股票型基金中 1410 个今年来收益率不为空,针对其进行分析:
股票型基金今年来收益率>0 的有 840 个,占比 59.57%;整体今年来平均收益率为 5.89%
如下图:
再来看下整体的收益率分布情况:
股票型基金的收益率小于0的占比40%,而且随着收益率的上升基金个数逐渐下降,和上上季度正态分布的图像形成了鲜明的对比
另外,收益率大于50%只有13只基金,真的是凤毛麟角般的存在
2. 基本:资产规模分布
对于资产规模,小一是这样理解的:大资产的基金在收益稳定的同时也会出现船大难掉头的情况,小规模的资金收益波动会较大,但也可以及时规避风险。
因为基金较多,以下只选取今年来收益率 Top300 的基金分析其资产规模。另外,资产规模均是截止到 2021-09-30 日的资金资产规模。
一起看图:
股票型基金的资产规模集中在 0-10亿元 区间,其中,大于70亿元 的基金有 10个,占比为 3.33%
可以看到,在20 亿元以下规模的基金占比 80以上,相比上上季度的78%上升了2PP
3. 重点:收益率前10!
基本面看完了,下面来点干货:
股票型基金今年来收益率的最高是 113.98%,Top10 的平均收益是 62.98%
可以看到,前10收益率的基金差距比较明显,尤其是基金『前海开源公用事业股票』收益率一骑绝尘,拉开第二名51.2个百分点,大牛中的大牛
除了第一名之外,其他2-10的基金收益率比较平稳,特别是2-5名之间,差距较小。
从图中看,资产规模与近两年的收益率不是强相关,另外,排名前5 的基金似乎是个不错的选择
供参考:
4. 干货:基金经理选谁?
买基金要看对基金经理,所以这一步是分析基金经理
同样的,我们取收益率较高的 前50名基金进行分析,根据基金经理 持有基金的平均收益率 为标准,选取排名 前15 的经理,如下图:
平均收益率前5的股票型基金经理都是各持有一只股票型基金,而对应的股票型基金我们在上一步已经看到了
可以看到,这次的结果和上上季度的分析结果完全不一样,特别是在头部基金经理这块,基本是重新洗牌了
当然,有一部分的原因是我将时间粒度由近2年缩小到今年来有一定的关系
股票型基金经理中崔宸龙持有的基金涨幅惊人,在今年这个行情中也能保持翻倍的收益,确实很厉害了。
另外,崔宸龙经理还管理一个混合型基金『前海开源新经济混合A』,今年的收益率 110.01%,在今年涨幅排行榜排第二。好奇的话可以去看看这两个基金的最新持仓,你应该能明白为什么会有这么高的收益
小结:
两极分化比较严重,特别是在今年的这种特殊行情下,抓住主线应该可以大赚一笔,不然可能就会白打工一整年
5. 干货:重仓买哪个?
再来说一个大家更感兴趣的内容:基金持仓情况
每一个基金的前 10 大持仓股都可以作为该基金的代表,这个毋庸置疑,所以在爬虫部分我们也就直接爬了前十大持仓数据。
这一节我们同样选取收益率较高的 前50名 股票型基金和混合型基金进行分析
每个基金都有前 10 大持仓股,所以对应的就有 500 个持仓股代表,筛选 持仓股累计占比排名前 30 个 持仓股作为重点观察对象,如图:
需要说明的是:加粗表示同时出现在股票型基金和混合型基金中。
可以看到,前15持仓股基本以光伏产业链、新能源为主,包括:宁德时代为龙头的光伏产业链、以比亚迪为龙头的新能源产业链
但是需要注意的是,15-30持仓股发生了很大的分歧,从分歧个股的分布来看,对应的板块集中在能源、有色、钢铁石油等
如果大家感兴趣,可以翻到文章开头看看1季度的文章中这个位置的图长什么样,再看看现在的图,做个对比
想必就算你不懂板块和个股,也能看出点端倪来。
小结:
这是今年以来收益率前50的基金的持仓情况,很明显,光伏+新能源是主线,拿住就能赚
对应的白酒、医药,在上面的图中看不到影子
但是但是但是,出现了很大的分歧,继续往下看!👇
文末有福利领取哦~
👉一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉二、Python必备开发工具
👉三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉 四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
👉五、Python练习题
检查学习结果。
👉六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!