最全【python】使用pycharts生成动态柱状统计图,2024年最新程序员面试技巧

最后

🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

数据可以在百度网盘获取:

百度网盘

使用记事本打开所给的数据,观察所给的数据

555417bde7674a7cb0c2d499085e351f.png

二、数据处理

f = open("D:\\BaiduNetdiskDownload\资料\可视化案例数据\动态柱状图数据\\1960-2019全球GDP数据.csv", 'r',encoding="GB2312") #打开文件,注意这里的编码格式是GB2312
data_lines = f.readlines()  #一行一行读取数据
f.close()  #读取完后关闭文件

然后需要将数据转为字典格式,形成以下的字典格式,以年份为key,当年所有国家的GDP以[国家, GDP]的形式储存在一个大列表里

{ 年份 : [[国家,GDP],[国家,GDP],[国家,GDP],……], 年份 : [[国家,GDP],[国家,GDP],[国家,GDP],……], ……}
#删除第一行无用的数据
data_lines.pop(0)

#生成空字典,将数据转为字典
data_dict = {}

#{ 年份 : [[国家,GDP],[国家,GDP],[国家,GDP],……], 年份 : [[国家,GDP],[国家,GDP],[国家,GDP],……], ……}
for lines in data_lines:
    year = int(lines.split(",")[0])  #以","分割字符串,获得年份,国家,GDP
    country = lines.split(",")[1]
    GDP = float((lines.split(",")[2]).replace('\n',''))

    try:
        data_dict[year].append([country,GDP])
    except KeyError: #若没有该年份的key
        data_dict[year] = [[country,GDP]]

三、生成动态柱状图

接下来就是按年份顺序,找出该年GDP为前8的国家,生成一张柱状统计图,每一年都生成一张柱状统计图,连起来就可以到达演示的效果

#取出字典所有的key值,并且排序年份顺序
sorted_year_list = sorted(data_dict.keys())

#创建时间图对象,括号内可以为空,这里仅为设置主题格式
timeline = Timeline({"theme":ThemeType.LIGHT})


#根据年份顺序生成柱状统计图
for year in sorted_year_list:
    
    #排序该年的国家GDP排名
    data_dict[year].sort(key=lambda element:element[1],reverse=True)

    #取出top8国家
    this_year_top8 = data_dict[year][:8]
    x_data = []
    y_data = []
    for single in this_year_top8:
        x_data.append(single[0])             #x轴数据
        y_data.append(single[1] / 100000000) #y轴数据,以亿为单位

    #倒转x,y轴顺序,否则会出现高GDP的国家在柱状图下面,低的在上面


做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。



别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。

我先来介绍一下这些东西怎么用,文末抱走。

* * *



**(1)Python所有方向的学习路线(新版)**

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。



最近我才对这些路线做了一下新的更新,知识体系更全面了。



![在这里插入图片描述](https://img-blog.csdnimg.cn/8fc093dcfa1f476694c574db1242c05b.png)



**(2)Python学习视频**



包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。



![在这里插入图片描述](https://img-blog.csdnimg.cn/d66e3ad5592f4cdcb197de0dc0438ec5.png#pic_center)



**(3)100多个练手项目**

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。



![在这里插入图片描述](https://img-blog.csdnimg.cn/f5aeb4050ab547cf90b1a028d1aacb1d.png#pic_center)



**(4)200多本电子书**  

  

这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。



基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。



**(5)Python知识点汇总**

知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。



![在这里插入图片描述](https://img-blog.csdnimg.cn/c741a91b05a542ba9dc8abf2f2f4b1af.png)



**(6)其他资料**



还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。



![在这里插入图片描述](https://img-blog.csdnimg.cn/9fa77af248b84885a6ec779b2ead064d.png)

**这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。**




**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化学习资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4304bb5a486d4c3ab8389e65ecb71ac0)**

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值