最后
🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
数据可以在百度网盘获取:
使用记事本打开所给的数据,观察所给的数据
二、数据处理
f = open("D:\\BaiduNetdiskDownload\资料\可视化案例数据\动态柱状图数据\\1960-2019全球GDP数据.csv", 'r',encoding="GB2312") #打开文件,注意这里的编码格式是GB2312
data_lines = f.readlines() #一行一行读取数据
f.close() #读取完后关闭文件
然后需要将数据转为字典格式,形成以下的字典格式,以年份为key,当年所有国家的GDP以[国家, GDP]的形式储存在一个大列表里
{ 年份 : [[国家,GDP],[国家,GDP],[国家,GDP],……], 年份 : [[国家,GDP],[国家,GDP],[国家,GDP],……], ……}
#删除第一行无用的数据
data_lines.pop(0)
#生成空字典,将数据转为字典
data_dict = {}
#{ 年份 : [[国家,GDP],[国家,GDP],[国家,GDP],……], 年份 : [[国家,GDP],[国家,GDP],[国家,GDP],……], ……}
for lines in data_lines:
year = int(lines.split(",")[0]) #以","分割字符串,获得年份,国家,GDP
country = lines.split(",")[1]
GDP = float((lines.split(",")[2]).replace('\n',''))
try:
data_dict[year].append([country,GDP])
except KeyError: #若没有该年份的key
data_dict[year] = [[country,GDP]]
三、生成动态柱状图
接下来就是按年份顺序,找出该年GDP为前8的国家,生成一张柱状统计图,每一年都生成一张柱状统计图,连起来就可以到达演示的效果
#取出字典所有的key值,并且排序年份顺序
sorted_year_list = sorted(data_dict.keys())
#创建时间图对象,括号内可以为空,这里仅为设置主题格式
timeline = Timeline({"theme":ThemeType.LIGHT})
#根据年份顺序生成柱状统计图
for year in sorted_year_list:
#排序该年的国家GDP排名
data_dict[year].sort(key=lambda element:element[1],reverse=True)
#取出top8国家
this_year_top8 = data_dict[year][:8]
x_data = []
y_data = []
for single in this_year_top8:
x_data.append(single[0]) #x轴数据
y_data.append(single[1] / 100000000) #y轴数据,以亿为单位
#倒转x,y轴顺序,否则会出现高GDP的国家在柱状图下面,低的在上面
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。
别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。
我先来介绍一下这些东西怎么用,文末抱走。
* * *
**(1)Python所有方向的学习路线(新版)**
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
![在这里插入图片描述](https://img-blog.csdnimg.cn/8fc093dcfa1f476694c574db1242c05b.png)
**(2)Python学习视频**
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
![在这里插入图片描述](https://img-blog.csdnimg.cn/d66e3ad5592f4cdcb197de0dc0438ec5.png#pic_center)
**(3)100多个练手项目**
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
![在这里插入图片描述](https://img-blog.csdnimg.cn/f5aeb4050ab547cf90b1a028d1aacb1d.png#pic_center)
**(4)200多本电子书**
这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。
基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。
**(5)Python知识点汇总**
知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。
![在这里插入图片描述](https://img-blog.csdnimg.cn/c741a91b05a542ba9dc8abf2f2f4b1af.png)
**(6)其他资料**
还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。
![在这里插入图片描述](https://img-blog.csdnimg.cn/9fa77af248b84885a6ec779b2ead064d.png)
**这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。**
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化学习资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4304bb5a486d4c3ab8389e65ecb71ac0)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**