网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
摘要
==
上周学习了EfficientNetV2的论文,并对其进行了翻译,如果对论文感兴趣的可以参考我的文章:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/117399085。
在EfficientNets的第一个版本中存在三个缺点:
(1) 用非常大的图像尺寸训练很慢;而且输入较大的图像必须以较小的批大小训练这些模型,这大大减慢了训练速度,但是精度反而下降了。
(2) 在网络浅层中使用Depthwise convolutions速度会很慢。
(3) 每个阶段都按比例放大是次优的。
EfficientNetV2针对这三个方面的缺点做了改进:
1、针对图像的大小的问题,作者提出了自适应正则化的渐进式学习的方法,详见论文的4.2节
2、针对Depthwise convolutions在早期层中很慢的问题,作者提出了 Fused-MBConv 模块来代替部分的MBConv。
3、针对每个阶段都按比例放大是次优的问题,作者使用非均匀缩放策略来逐步添加 到后期阶段。
作者对EfficientNetV2做了三方面的总结
•我们引入了 EfficientNetV2,这是一个新的更小、更快的模型系列。 通过我们的训练感知NAS 和扩展发现,EfficientNetV2 在训练速度和参数效率方面都优于以前的模型。
• 我们提出了一种改进的渐进式学习方法,它可以根据图像大小自适应地调整正则化。 我们表明它可以加快训练速度,同时提高准确性。
• 我们在 ImageNet、CIFAR、Cars 和 Flowers 数据集上展示了比现有技术快 11 倍的训练速度和 6.8 倍的参数效率。
总之,一句话,我们的新模型又快又准而且还小,大家赶快用吧!下面我就讲讲如何使用Pytorch实现EfficientNetV2。
代码实现
====
EfficientNetV2和EfficientNet一样也是一个家族模型,包括:efficientnetv2_s、efficientnetv2_m,、efficientnetv2_l、efficientnetv2_xl。所以我们要实现四个模型。
激活函数
激活函数使用SiLU激活函数,我对激活函数做了总结,感兴趣的可以查看:CNN基础——激活函数_AI浩-CSDN博客
SiLU (Swish) activation function
if hasattr(nn, ‘SiLU’):
SiLU = nn.SiLU
else:
For compatibility with old PyTorch versions
class SiLU(nn.Module):
def forward(self, x):
return x * torch.sigmoid(x)
SE模块
SE模块,我在前面的文章中已经介绍了。现在直接将SE模块拿过来使用。
class SELayer(nn.Module):
def init(self, inp, oup, reduction=4):
super(SELayer, self).init()
self.avg_pool =