既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
各位被困在家中的小伙伴们,大家新年好~今天将继续为大家带来用Python进行gRPC接口测试的续集,上次主要讲了一下前期准备工作和简单RPC通信方式的实现,这次我们将着眼于另一类gRPC接口的通信形式——流式RPC。
一、流式RPC的三种具体形式
流式RPC不同于简单RPC只有“单发单收“一种形式,而是可以分为三种不同的形式——“应答流式RPC”,“请求流式RPC”,“双向流式RPC”。对于这三种不同的形式,python有不同的请求及接收方式,下面就让我们来具体了解一下。(对于下面操作有疑问的同学可以去看上一期的内容)
首先接口协议是有区别的,我们来看三种形式的接口定义:
应答流式RPC:
rpc ListFeatures(Rectangle) returns (stream Feature) {}
请求流式RPC:
rpc RecordRoute(stream Point) returns (RouteSummary) {}
双向流式RPC:
rpc RouteChat(stream RouteNote) returns (stream RouteNote) {}
可以看到,请求和响应参数中流式内容的前面会有一个stream标识,代表这是一个流式的内容。应答流式RPC只有返回是流式的,请求流式RPC只有请求是流式的,而双向流式RPC请求和返回都是流式的。
一个包含接口的完整proto协议文件(route_guide.proto)内容如下:
syntax = "proto3";
option java_multiple_files = true;
option java_package = "io.grpc.examples.routeguide";
option java_outer_classname = "RouteGuideProto";
option objc_class_prefix = "RTG";
package routeguide;
service RouteGuide {
rpc ListFeatures(Rectangle) returns (stream Feature) {}
rpc RecordRoute(stream Point) returns (RouteSummary) {}
rpc RouteChat(stream RouteNote) returns (stream RouteNote) {}
}
message Point {
int32 latitude = 1;
int32 longitude = 2;
}
message Rectangle {
Point lo = 1;
Point hi = 2;
}
message Feature {
string name = 1;
Point location = 2;
}
message RouteNote {
Point location = 1;
string message = 2;
}
message RouteSummary {
int32 point_count = 1;
int32 feature_count = 2;
int32 distance = 3;
int32 elapsed_time = 4;
}
根据协议文件生成route_guide_pb2.py、route_guide_pb2_grpc.py两个必要的模块文件,然后就可以根据他们来创建客户端了。
二、客户端实现
1、应答流式RPC
应答流式RPC返回的内容为流式,一次请求,n次返回。我们可以用for循环来接收返回的内容:
def guide_list_features(stub):
rectangle = route_guide_pb2.Rectangle(
lo=route_guide_pb2.Point(latitude=400000000, longitude=-750000000),
hi=route_guide_pb2.Point(latitude=420000000, longitude=-730000000))
print("Looking for features between 40, -75 and 42, -73")
features = stub.ListFeatures(rectangle)
for feature in features:
print("Feature called %s at %s" % (feature.name, feature.location))
2、请求流式RPC
请求流式RPC请求的内容为流式,n次请求,一次返回。我们可以用迭代器来发送若干份请求数据:
def generate_route(feature_list):
for _ in range(0, 10):
random_feature = feature_list[random.randint(0, len(feature_list) - 1)]
print("Visiting point %s" % random_feature.location)
yield random_feature.location
def guide_record_route(stub):
feature_list = route_guide_resources.read_route_guide_database()
route_iterator = generate_route(feature_list)
route_summary = stub.RecordRoute(route_iterator)
print("Finished trip with %s points " % route_summary.point_count)
print("Passed %s features " % route_summary.feature_count)
print("Travelled %s meters " % route_summary.distance)
print("It took %s seconds " % route_summary.elapsed_time)
其中route_iterator为一个迭代器。
3、双向流式RPC
双向流式RPC请求的内容为流式,返回内容也为流式,n次请求,n次返回。我们可以用迭代器来发送若干份请求数据,通过for循环来接收返回结果:
def generate_messages():
messages = [
make_route_note("First message", 0, 0),
make_route_note("Second message", 0, 1),
make_route_note("Third message", 1, 0),
make_route_note("Fourth message", 0, 0),
make_route_note("Fifth message", 1, 0),
]
for msg in messages:
print("Sending %s at %s" % (msg.message, msg.location))
yield msg
def guide_route_chat(stub):
responses = stub.RouteChat(generate_messages())
for response in responses:
print("Received message %s at %s" %
(response.message, response.location))
三、实际应用
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
提升。**
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!