Abaqus2022安装教程(非常详细)从零基础入门到精通,看完这一篇就够了(附安装包)

3.打开电脑【C盘】,在空白处鼠标右击选择【粘贴】。

4.双击打开粘贴后的【SolidSQUAD_License_Servers】文件夹。

5.鼠标右击【install_or_update】选择【以管理员身份运行】。

6.提示【All done!Enjoy!】后点击右上角【X】退出。

7.鼠标右击桌面【此电脑】选择【属性】。

8.点击【高级系统设置】,点击【环境变量】。

9.在系统变量下:❶点击【新建】,❷输入变量名【NOLICENSECHECK】和变量值【true】,❸点击【确定】,❹点击【确定】。

10.打开安装包解压后的【Abaqus2022(64bit)】文件夹,双击打开【DS.SIMULIA.Suite.2022.Win64】文件夹。

11.双击打开【1】文件夹。

12.鼠标右击【setup】选择【以管理员身份运行】。

13.点击【下一步】。

14.选择需要安装的产品(请勿选择FlexNET License server),点击【下一步】。

15.点击【安装】。

16.①点击【浏览】,②选择安装包解压后【Abaqus2022(64bit)\DS.SIMULIA.Suite.2022.Win64】文件夹里的【2】,③点击【选择文件夹】。

17.点击【确定】。

18.修改路径地址中的首字符"C"可更改安装位置(如:将C改为D表示安装到D盘),点击【下一步】。

19.选择需要安装的零部件,点击【下一步】。

20.选择【SIMULIAFLEXnet】,点击【下一步】。

21.输入【27800@localhost】,点击【下一步】。

22.点击【下一步】。

23.点击【下一步】。

24.点击【下一步】。

25.点击【安装】。

26.软件安装中……

27.点击【确定】。

28.点击【Continue】。

29.点击【关闭】。

30.①点击【浏览】,②选择安装包解压后【Abaqus2022(64bit)\DS.SIMULIA.Suite.2022.Win64】文件夹里的【3】,③点击【选择文件夹】。

31.点击【确定】。

32.点击【下一步】。

33.点击【下一步】。

34.点击【安装】。

35.软件安装中……

36.点击【关闭】。

37.点击【关闭】。

温馨提示:若您勾选其它的零部件,后面可能还会有产品安装,根据提示操作直到安装完成即可。

38.创建桌面启动快捷方式:❶点击任务栏中的【开始】图标,❷在所有应用中找到【Dassault……】文件夹→拖动【Abaqus CAE】图标到电脑桌面。

39.双击桌面【Abaqus CAE】图标启动软件。

40.安装成功。

附中文版启动方法:

1)鼠标右击桌面【Abaqus CAE】图标选择【打开文件所在的位置】。

2)点击路径中的【win_b64】。

3)打开该文件夹下的【SMA\Configuration】文件夹,双击打开【locale】。

4)在第二行“########……”前加上【Chinese (Simplified)_China.936 = zh_CN】,在第三行“########……”前,将【zh_CN = 0】改为【zh_CN = 1】,修改完成后保存。

5)双击桌面【Abaqus CAE】图标启动软件。

6)语言切换成功(中文版界面如下图所示)!

题外话

初入计算机行业的人或者大学计算机相关专业毕业生,很多因缺少实战经验,就业处处碰壁。下面我们来看两组数据:

  • 2023届全国高校毕业生预计达到1158万人,就业形势严峻;
  • 国家网络安全宣传周公布的数据显示,到2027年我国网络安全人员缺口将达327万。

一方面是每年应届毕业生就业形势严峻,一方面是网络安全人才百万缺口。

6月9日,麦可思研究2023年版就业蓝皮书(包括《2023年中国本科生就业报告》《2023年中国高职生就业报告》)正式发布。

2022届大学毕业生月收入较高的前10个专业

本科计算机类、高职自动化类专业月收入较高。2022届本科计算机类、高职自动化类专业月收入分别为6863元、5339元。其中,本科计算机类专业起薪与2021届基本持平,高职自动化类月收入增长明显,2022届反超铁道运输类专业(5295元)排在第一位。

具体看专业,2022届本科月收入较高的专业是信息安全(7579元)。对比2018届,电子科学与技术、自动化等与人工智能相关的本科专业表现不俗,较五年前起薪涨幅均达到了19%。数据科学与大数据技术虽是近年新增专业但表现亮眼,已跻身2022届本科毕业生毕业半年后月收入较高专业前三。五年前唯一进入本科高薪榜前10的人文社科类专业——法语已退出前10之列。

“没有网络安全就没有国家安全”。当前,网络安全已被提升到国家战略的高度,成为影响国家安全、社会稳定至关重要的因素之一。

网络安全行业特点

1、就业薪资非常高,涨薪快 2021年猎聘网发布网络安全行业就业薪资行业最高人均33.77万!

2、人才缺口大,就业机会多

2019年9月18日《中华人民共和国中央人民政府》官方网站发表:我国网络空间安全人才 需求140万人,而全国各大学校每年培养的人员不到1.5W人。猎聘网《2021年上半年网络安全报告》预测2027年网安人才需求300W,现在从事网络安全行业的从业人员只有10W人。

行业发展空间大,岗位非常多

网络安全行业产业以来,随即新增加了几十个网络安全行业岗位︰网络安全专家、网络安全分析师、安全咨询师、网络安全工程师、安全架构师、安全运维工程师、渗透工程师、信息安全管理员、数据安全工程师、网络安全运营工程师、网络安全应急响应工程师、数据鉴定师、网络安全产品经理、网络安全服务工程师、网络安全培训师、网络安全审计员、威胁情报分析工程师、灾难恢复专业人员、实战攻防专业人员…

职业增值潜力大

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数HarmonyOS鸿蒙开发工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年HarmonyOS鸿蒙开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上HarmonyOS鸿蒙开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注鸿蒙获取)
img

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上HarmonyOS鸿蒙开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注鸿蒙获取)
[外链图片转存中…(img-P8Rz6xBn-1712823948470)]

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

<think>好的,用户想查找与GPR(高斯过程回归)相关的常用数据集。首先,我需要回忆一下高斯过程回归的特点和应用领域。GPR常用于回归任务,处理非线性关系,并且需要能展示其不确定性估计的优势。因此,常用的数据集可能包括标准回归测试集和特定领域的数据。 接下来,我需要考虑不同领域的常见数据集。例如,UCI机器学习仓库里有很多经典数据集,比如波士顿房价、葡萄酒质量等,这些常用于回归任务。另外,时间序列预测方面,可能有股票价格、气温数据。工程领域如机器人逆动力学、传感器数据也可能适用。 然后,用户可能不仅需要数据集的名称,还需要知道如何获取和使用这些数据集。比如UCI的链接,或者Matlab内置的数据集。此外,合成数据集也很重要,因为它们可以自定义复杂性,适合验证模型。 还需要注意用户提到的引用来源,里面提到了Matlab的实现,所以可能需要提到Matlab自带的数据集,如carbig。另外,地理统计中的数据集比如Walker Lake符合空间数据预测,适合GPR处理空间相关性。 最后,要确保数据集涵盖不同特征,如低维、高维、时间序列、空间数据等,以展示GPR的广泛适用性。同时,提醒用户数据预处理的重要性,比如标准化和划分训练测试集,以及如何通过合成数据测试模型能力。</think>### 高斯过程回归(GPR)常用数据集 高斯过程回归(GPR)因其对非线性关系建模和不确定性量化的能力,广泛应用于多个领域。以下是常用的数据集及其特点: 1. **经典回归测试数据集** - **波士顿房价数据集** 包含房屋特征(如房间数、犯罪率)与房价的对应关系,适用于低维回归问题[^1]。 - **葡萄酒质量数据集** 包含葡萄酒的理化指标(酸度、含糖量等)与质量评分,适合多输入单输出回归任务[^2]。 2. **时间序列预测数据集** - **NASDAQ股票价格** 时间序列数据可用于验证GPR在动态系统中的预测能力,例如股票价格或气温变化预测[^5]。 - **气温传感器数据** 包含多传感器采集的温度序列,适合时空联合建模。 3. **工程与科学实验数据集** - **机器人逆动力学数据集** 记录机器人关节力矩与运动状态的关系,用于验证GPR在复杂系统建模中的效果[^1]。 - **Walker Lake地质数据** 地理空间采样数据,用于展示GPR在空间插值中的优势[^3]。 4. **合成数据集** - **正弦函数加噪声** 例如:$y = \sin(x) + \epsilon$,用于验证GPR对噪声的鲁棒性。 - **多维输入函数** 如$f(x_1, x_2) = x_1^2 + \sin(x_2)$,测试高维输入下的回归性能。 5. **Matlab内置数据集** - **`carbig`数据集** 包含汽车引擎参数与油耗数据,可直接通过Matlab加载,便于快速验证GPR模型。 --- ### 数据集获取与使用建议 - **UCI机器学习仓库** 访问链接:[UCI Dataset](https://archive.ics.uci.edu/ml/datasets.php) 搜索回归任务相关数据集。 - **Matlab数据工具** 使用`load carbig`或`importdata()`直接调用内置数据。 - **合成数据生成** 通过编程自定义函数生成数据,例如: ```matlab x = linspace(0, 10, 100)'; y = sin(x) + 0.1*randn(size(x)); ``` --- ### 注意事项 1. **数据预处理** 对输入特征进行标准化(如Z-score归一化),输出变量可保持原始尺度。 2. **训练-测试划分** 建议按7:3或交叉验证划分,避免过拟合[^4]。 3. **核函数选择** 根据数据特性选择协方差函数,如周期数据用周期核,空间数据用RBF核。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值