既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
多项式的单向链表表示
通常情况下,要存储的多项式为:
其中, 是非零系数, 是非负整形指数,。把每一项表示为一个结点,该结点包含系数域,指针域和指向下一项的指针。假设系数为整数,则结点可由下方所示:
参考代码
typedef struct poly_node *poly_pointer typedef struct poly_node { int coef; int expon; poly_pointer link; };
图解存储方式
我们来看看这两个多项式的存储方式:
多项式加法
图解算法原理
为了将两个多项式相加,从 a 和 b 所指向的结点开始比较两个多项式的各个项。如果这两项的指数相同,那么把它们的系数相加,并生成一个新的结果项,然后移动这两个指针,分别指向多项式 a 和 b 的下一个结点。如果 a 的当前项指数小于 b 的当前项指数,那么生成 b 的副本项,加入到结果 d 中,并移动指针指向 b 的下一项。如果 a−>expon>b−>expon,那么对 a 采取同样的操作。
多项式的处理过程如下所示:
**第一步:**a−>expon==b−>expon
**第二步:**a−>expon<b−>expon
**第三步:**a−>expon>b−>expon
后面的情况处理方法相同,这里就不一一展开说明了
新结点的生成
每次生成一个新结点,设置它的 coef 域和 expon 域,并将它添加到 d 的尾部,为了避免每次加入新结点时都搜索 d 的最后结点,使用函数 rear 指向 d 中最后的结点。
参考代码
void attach(float coefficient,int exponent,poly_pointer *ptr) { poly_pointer temp; temp=(poly_pointer) malloc(sizeof(poly_node)); temp->coef=coefficient; temp->expon=exponent; (*ptr)->link=temp; *ptr=temp; }
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
提升。**
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!