Hive数据仓库笔记,大厂offer手到擒来

Hive架构图

请添加图片描述

Hive架构基本组成

Hive 的体系结构主要分为以下几个部分:
用户接口

用户接口主要有 3 个:CLI,Client 和 WEBUI。其中最常用的就是 CLI,CLI启动时会启动一个 Hive 副本【其实就是一个 Shell 客户端】;Client 是 Hive 的客户端,用户通过其连接至 HiveServer2,在启动 Client 模式的时候,需要指出 HiveServer2 所在节点和端口,并且在该节点启动 HiveServer2;WEBUI 就是通过浏览器访问 Hive,可以使用 Hue 组件在浏览器上写 HQL 执行相关操作。

MetaStore

Hive 将元数据存储在关系型数据库中,比如 MySQL、Derby等。Hive 中的元数据包括表的名字、表的列和分区及其属性,表的属性(是否为外部表等)、表的数据所在目录等等

ThriftServer

ThriftServer 是将 Hive 作为一个服务器,其他机器可以作为客户端进行访问,可以使用多种编程语言【Java、Python 】通过代码操作 Hive。

Driver

  • SQL Parser
  • Hive 的解析器是将查询字符串转换成抽象语法树 —— AST,对 AST 进行语法分析,比如表是否存在、字段是否存在、SQL 语义是否有误
  • Physical Plan
    将 AST 编译生成逻辑执行计划
  • SQL Optimizer
    对逻辑执行计划进行优化
  • Execution
    把逻辑执行计划转换成可以运行的物理计划任务树。对于 Hive 来说,就是 MR/Spark
    请添加图片描述
    1.完成 SQL 词法,语法解析,将 SQL 转化为抽象语法树 AST Tree
    2.遍历 AST Tree,抽象出查询的基本组成单元 Query Block
    3.遍历 Query Block,翻译为执行操作树 OperatorTree,即逻辑执行计划
    4.逻辑层优化器进行 OperatorTree 变换,合并不必要的 ReduceSinkOperator,减少 Shuffle 数据量
    5.遍历 OperatorTree,翻译为 Hive job 任务,即物理计划
    6.物理层优化器进行 Hive job 任务的变换,生成最终的执行计划

数据库和数据仓库

OLTP : 联机事务处理就是保存我们日常生活中的各种用户行为产生的记录的数据平台.

  • 特点: 服务于业务,需要少量数据的频繁增删改查,要保证响应速度,保证数据安全,保证时效性.

OLAP : 联机分析处理,就是我们数据分析时所使用的海量数据存放的数据平台,一般会将多个业务数据库或各种数据源中的数据提取出来,统一存放在OLAP服务中.

  • 特点: 服务于分析,要能应对海量的数据存储和数据计算,对于响应速度要求不高,我们很少修改数据,所以也不需要对于数据的一致性,安全性等进行考虑.
数据库和数据仓库的区别
  • 本质的区别就是OLTP 和OLAP系统的区别
  • 数据库更偏重于事务处理,要求其支持事务,增删改查效率较高
  • 事务: 最小业务单元, 在执行过程中,要么全部 成功,要么全部失败
  • 举例: 小椭圆给小绿转账1000元 , 银行系统需要给小椭圆减少1000元, 给小绿增加一千元 要么同时成功,要么同时失败
  • 落实到代码层面就是多条sql语句,要么全部成功,要么全部失败.
  • 数据仓库偏重于数据吞吐量和稳定,不要求支持事务,不要求较高的响应效率,但必须可以处理海量数据或文件
  • 数据仓库不是大型的数据库,也没有要取代数据库的目标,只是一个数据分析的平台。

数据仓库核心特征

面向主题性(Subject-Oriented)

主题(subject)是一个抽象的概念 数据综合体。一个分析的主题可以对应多个数据源。
在数仓中开展分析,首先确定分析的主题,然后基于主题寻找、采集跟主题相关的数据。
在数据分析中,要做到宁滥勿缺.

集成性(Integrated)

数仓不是生成数据的平台 其数据来自于各个不同的数据源
当我们确定主题之后 就需要把和主题相关的数据从各个数据源集成过来。
因为同一个主题的数据可能来自不同的数据源 它们之间会存在着差异(异构数据):字段同名不统一、单位不统一、编码不统一;
因此在集成的过程中需要进行ETL(Extract抽取 Transform转换 load加载)

不可更新性(Non-Volatile)

数仓上面的数据几乎没有修改操作,都是分析的操作。
数仓是分析数据规律的平台 不是创造数据规律的平台。
注意:改指的数据之间的规律不能修改。

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
img

这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
[外链图片转存中…(img-AgiRYICw-1712520590079)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值