for(int i = 1; i <= n; i ++ ) // 将数组 a[] 看成自己的差分
{
int x;
scanf("%d", &x);
add(i, i, x);
}
for(int i = 1; i <= m; i ++ )// 修改操作
{
int k, l, r, c;
scanf("%d%d%d%d", &k, &l, &r, &c);
if(k == 1) add(l, r, -c);
else add(l, r, c);
}
for(int i = 1; i <= n; i ++ )// 求差分数组 a[]的前缀和(即修改后a[] 的值)
a[i] += a[i - 1];
int l, r;
scanf("%d%d", &l, &r);
LL ans = 0;
for(int i = l; i <= r; i ++ )
ans += a[i];
printf("%lld\n", ans);
return 0;
}
**差分的局限性**:我们可以注意到,利用差分数组 b[] 可以将原来
O
(
n
)
O(n)
O(n) 的区间修改,降为
O
(
1
)
O(1)
O(1)的端点修改,从而提高了修改操作的效率。
~~~~
但是,对于一次的查询操作,我们必须计算前缀和 b[1] + b[2] + ··· + b[x]才能将原数组 a[x] 求出,计算量是
O
(
n
)
O(n)
O(n)的,即一次查询的复杂度是
O
(
n
)
O(n)
O(n)的。也就是说,如果查询操作发生多次,例如 m 次修改,k 次查询,且修改和查询的顺序是随机的,即可能边修改边查询。此时总复杂度为:m 次修改复杂度
O
(
m
)
O(m)
O(m),k次查询复杂度
O
(
k
n
)
O(kn)
O(kn),即
o
(
m
+
k
n
)
o(m + kn)
o(m+kn)。还不如直接暴力来的快
O
(
m
n
+
k
)
O(mn + k)
O(mn+k)。
~~~~
可以看出,尽管差分数组对于 ”区间修改“很高效,但是对于”单点查询“来说略显吃力。此时有专门的数据结构来解决这一类问题:树状数组和线段树,详见本博客的树状数组和线段树专题。
### 2. 二维差分
#### 1.1 基本概念
~~~~
有了一维差分的认识后,我们容易就能拓展到二维差分。一维是线性的,一段区间【L,R】有两个端点;二维是一个矩阵,一块区间由四个端点所围成。
>
> **问
>
>
> 题
>
>
> 描
>
>
> 述
>
>
>
>
> \color{Turquoise}问题描述
>
>
> 问题描述**: 在 n × n 的格子上有 m 个地毯。给出这些地毯的信息,问每个点被多少地毯覆盖。
>
>
> **输入**: 第一行是两个整数n, m。接下来 m 行,每行 2 个坐标(x1, y1) 和 (x2, y2 ),代表一块地毯,左上角是 (x1, y1),右下角是(x2, y2)。
>
>
> **输出**:输出n行,每行n个正整数。第i行第j列的正整数表示(i, j)这个格式被多少地毯覆盖。
>
>
>
~~~~
可以发现,这是前面例题区间(interval)的二维拓展,其修改和查询操作完全一样。
~~~~
我们知道存储矩阵往往需要很大的空间。如果题目有空间的限制,例如100M = 100 \* 1024 \*1024 个字节(byte),那么对于矩阵每个元素是 4 个字节的 int型 来说,可以计算出最大的 maxn = 5120。不过,也可以像前面例题一样,不定义差分矩阵 `b[][]`,直接将原矩阵`a[][]`看成自己的差分矩阵,这样一来就能剩下一半的空间了。
~~~~
同前面一样,我们先考虑能不能直接暴力求解。可以看出,每次矩阵修改的复杂度是
O
(
n
2
)
O(n^2)
O(n2),共 m 次,总复杂度为
O
(
m
+
n
2
)
O(m+n^2)
O(m+n2),肯定会 TLE。
**(
1
)
二
维
差
分
的
定
义
\color{Purple}(1)二维差分的定义
(1)二维差分的定义**
~~~~
在一维差分中,原数组a[ ]是从第1个b[1]开始的差分数组 b[ ]的前缀和:a[x]= b[1] + b[2] + ··· + b[x]。
~~~~
在二维差分中,a[ ][ ]是差分数组b[ ][ ]的前缀和,即将原点坐标`(1,1)`和坐标`(i,j)`围成的矩阵中,所有的b[ ][ ]相加等于a[ i ][ j ]。我们可以把每个`b[][]`看成一个小格;在坐标`(1,1)`和`(i,j)`所围成的范围内,所有小格子加起来的总面积,等于 `a[i][j]`。如下图中,每个格子的面积是一个 b[ ][ ],例如阴影格子是b[ i ][ j ],它由4个坐标点组成:
(
i
,
j
)
\color{CadetBlue}(i, j)
(i,j)、
(
i
−
1
,
j
)
\color{CadetBlue}(i - 1, j)
(i−1,j)、
(
i
,
j
−
1
)
\color{CadetBlue}(i, j - 1)
(i,j−1)、
(
i
−
1
,
j
−
1
)
\color{CadetBlue}(i - 1, j - 1)
(i−1,j−1)。坐标点`(i, j)`的值是 a[ i ][ j ],它等于坐标`(1,1)`和`(i,j)`所围成的所有格子的总面积 。
![在这里插入图片描述](https://img-blog.csdnimg.cn/a5ec5e5af0e24da89c541fe6f77b2d0e.png#pic_center)
把
每
个
a
[
]
[
]
看
成
总
面
积
,
把
每
个
b
[
]
[
]
看
成
小
格
子
的
面
积
把每个a[][] 看成总面积,把每个b[][]看成小格子的面积
把每个a[][]看成总面积,把每个b[][]看成小格子的面积
~~~~
由上图我们可以得到二维差分的定义:在二维情况下,差分就变成了相邻`a[][]`的"面积差’’,计算公式是:
b
[
i
]
[
j
]
=
a
[
i
]
[
j
]
−
a
[
i
−
1
]
[
j
]
−
a
[
i
]
[
j
−
1
]
+
a
[
i
−
1
]
[
j
−
1
]
\color{Red}b[i][j] = a[i][j] - a[i - 1][j] - a[i][j - 1] + a[i - 1][j - 1]
b[i][j]=a[i][j]−a[i−1][j]−a[i][j−1]+a[i−1][j−1]
~~~~
即利用上图红色大面积
a
[
i
]
[
j
]
\color{Maroon}a[i][j]
a[i][j]减去两个小面积
a
[
i
−
1
]
[
j
]
\color{Turquoise}a[i- 1][j]
a[i−1][j]、
a
[
i
]
[
j
]
\color{Green}a[i][j]
a[i][j],由于两个小面积公共的部分`a[i-1][j -1]`被减去了 2 次,故要加回来 1 次
a
[
i
−
1
]
[
j
−
1
]
\color{Yellow}a[i - 1][j - 1]
a[i−1][j−1]。
**(
2
)
二
维
区
间
修
改
\color{Purple}(2) 二维区间修改
(2)二维区间修改**
~~~~
对于一维区间修改的操作,我们只需要修改区间的两个端点的`b[]`值。那么相应地,在二维情况下,一块区间是一个矩阵,由4个端点,只需要修改这 4个 `b[][]`值即可。如下图所示,
![在这里插入图片描述](https://img-blog.csdnimg.cn/63656185201942bd84f25af0294c8491.png#pic_center)
当我们对坐标点 `(x1, y1) ~ (x2, y2)`所围成的区间进行修改时,对应的4个端点的操作应为:
b[x1][y1] += c; // 二维区间的起点
b[x1][y2 + 1] -= c; // 把 x看成常数,y从 y1 到 y2
b[x2 + 1][y1] -= c;// 把 y看成常熟,x从 x1 到 x2
b[x2 + 1][y2 + 1] += c;// 由于前面两式把 c 减去了 2 次,故要加回 1 次
#### 1.2 例题分析
【例题1】[Monitor](https://bbs.csdn.net/topics/618545628)
题意:Xiaoteng 有一个 n×m 的矩形庄稼地,为了抓到小偷,安装了 p 个监控,每个监控都有一个矩形的监视范围,左上角为 (x1,y1),右下角为 (x2,y2)。小偷们会来偷 q 次,每次小偷们的作案地点都是一个矩形区域,左上角为 (x1,y1),右下角为 (x2,y2)。问每次小偷们作案时,能否看到全部的小偷。
思路:将每个监控的矩形监视区域里的每个数都加上 1,都操作在差分数组上。求差分数组的前缀和得到原数组,如果原数组中的值大于 1,说明该点被多个监控覆盖,我们只需要记 1 个即可。对于小偷们每次作案的矩形区域,看监控区域是否全部覆盖(是否全是1),如果全部覆盖(作案矩形同监控矩形的值相等)则输出 YES,否则,输出NO。
**AcCode**
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int main()
{
int n, m;
while(~scanf("%d%d", &n, &m))
{
vector<vector<int>> a(n + 10, vector<int>( m + 10, 0));
int k;
scanf("%d", &k);
while(k -- )
{
int x1, y1, x2, y2;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
a[x1][y1] += 1;
a[x2 + 1][y1] -= 1;
a[x1][y2 + 1] -= 1;
a[x2 + 1][y2 + 1] += 1;
}
// 求差分数组的前缀和,得到原数组的值
for(int i = 1; i <= n; i ++ )
for(int j = 1; j <= m; j ++ )
a[i][j] += a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1];
// 如果被该区域被监控覆盖多次,则只记一次
for(int i = 1; i <= n; i ++ )
for(int j = 1; j <= m; j ++ )
if(a[i][j] > 1) a[i][j] = 1;
// 对于小偷们每次作案的矩形区域,看监控区域是否全部覆盖(是否全是1)
int p;
scanf("%d", &p);
while(p -- )
{
int x1, y1, x2, y2;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
int s1 = (x2 - x1 + 1) \* (y2 - y1 + 1);
int s2 = f[x2][y2] - f[x1 - 1][y2] - f[x2][y1 - 1] + f[x1 - 1][y1 - 1];
if(s1 == s2) puts("YES");
else puts("NO");
}
}
return 0;
}
### 3.三维差分
#### 1.1 基本概念
~~~~
三维已是人类空间想象的一个大跨度,其差分难度较为复杂,不过没关系,下面我们将利用空间立体图来逐一理解。
**(
1
)
三
维
差
分
的
定
义
\color{Purple}(1)三维差分的定义
(1)三维差分的定义**
~~~~
元素值用三维数组 `a[][][]`来定义,差分数组`b[][][]`也是三维的。与之前低维度的差分类似,把三维差分想象成立体空间的操作。与之对应的小立方块有 8 个顶点,所以三维的区间需要修改 8 个`b[][][]`的值。
~~~~
在二维差分中,`a[][]` 是差分数组 `b[][]`的前缀和,即原点坐标 (1,1)和 坐标(i,j)围成的矩阵面积。
~~~~
在三维差分中,`a[][][]` 是差分数组 `b[][][]`的前缀和,即原点坐标 (1, 1, 1) 和 坐标(i, j, k)围成的立体体积。同样地,我们把每个`b[][][]`看成一个小立方体,在坐标`(1, 1, 1)` ~ `(i , j,k)`所围成的空间中,所有小立体加起来的总体积即为`a[i][j][k]`。如下图所示,每个小立方体由 8 个端点定义。坐标点(i,j,k)的值是 `a[i][j][k]`; 图中小立方体的体积是差分数组 `b[i][j][k]`的值。
![在这里插入图片描述](https://img-blog.csdnimg.cn/4301dd24e1b14d3db4f9a81a5121566a.png#pic_center)
~~~~
类似的,在三维情况下,差分就变成了相邻的`a[][][]`的 ”体积差“。那么如何来写出差分的递推计算公式呢?
观察前面一、二维的前缀和我们可以发现,其前缀和规律十分吻合容斥原理。
![在这里插入图片描述](https://img-blog.csdnimg.cn/a79059b5c1d045958ee2876f347bdd24.png#pic_center)
即对于
维
度
为
t
\color{Red}维度为 t
维度为t 的前缀和,记 **S(t)** 为其前缀和的递推式,则我们有:
S
(
t
)
=
a
[
t
]
+
∑
n
=
1
∞
(
−
1
)
(
n
−
1
)
S
(
[
t
−
1
]
的
组
合
形
式
)
,
n
为
−
1
的
个
数
S(t) = a[t]+ \sum\_{n = 1}^{∞}(-1)^{(n -1)}S( [t- 1]的组合形式),\color{CadetBlue}n~为 -1的个数
S(t)=a[t]+n=1∑∞(−1)(n−1)S([t−1]的组合形式),n 为−1的个数
所以对于三维的差分数组`b[][][]`,其递推式如下:
b
[
i
]
[
j
]
[
k
]
=
s
[
i
]
[
j
]
[
k
]
−
s
[
i
−
1
]
[
j
]
[
k
]
−
s
[
i
]
[
j
−
1
]
[
k
]
−
s
[
i
]
[
j
]
[
k
−
1
]
+
s
[
i
−
1
]
[
j
−
1
]
[
k
]
+
s
[
i
−
1
]
[
j
]
[
k
−
1
]
+
s
[
i
]
[
j
−
1
]
[
k
−
1
]
−
s
[
i
−
1
]
![img](https://img-blog.csdnimg.cn/img_convert/6b91b421f15d2d9e5ddf4708732bae9d.png)
![img](https://img-blog.csdnimg.cn/img_convert/95de47bba384747ec518948a7ed6026f.png)
![img](https://img-blog.csdnimg.cn/img_convert/ad629fbebd59e263c50ad0df01482534.png)
**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**
**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**
−
1
的
个
数
S(t) = a[t]+ \sum\_{n = 1}^{∞}(-1)^{(n -1)}S( [t- 1]的组合形式),\color{CadetBlue}n~为 -1的个数
S(t)=a[t]+n=1∑∞(−1)(n−1)S([t−1]的组合形式),n 为−1的个数
所以对于三维的差分数组`b[][][]`,其递推式如下:
b
[
i
]
[
j
]
[
k
]
=
s
[
i
]
[
j
]
[
k
]
−
s
[
i
−
1
]
[
j
]
[
k
]
−
s
[
i
]
[
j
−
1
]
[
k
]
−
s
[
i
]
[
j
]
[
k
−
1
]
+
s
[
i
−
1
]
[
j
−
1
]
[
k
]
+
s
[
i
−
1
]
[
j
]
[
k
−
1
]
+
s
[
i
]
[
j
−
1
]
[
k
−
1
]
−
s
[
i
−
1
]
[外链图片转存中...(img-c9IAokdF-1714459107230)]
[外链图片转存中...(img-R2iTqEH2-1714459107230)]
[外链图片转存中...(img-FvcJ0J44-1714459107231)]
**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**
**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**