【前端寻宝之路】学习和使用CSS的所有选择器,HarmonyOS鸿蒙 面试题 中高级

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新HarmonyOS鸿蒙全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img

img
img
htt

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上鸿蒙开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip204888 (备注鸿蒙)
img

正文

Document

前端开发

后端开发

在这里插入图片描述


通配符选择器

使用 * 的定义,选取所有的标签.

* {
color: red ;
}

  • 页面所有的内容都会被改成 红色.
  • 不需要被页面结构调用.

通配符选择器在实际应用开发中用来针对页面中所有的元素默认样式进行消除,主要用来消除边距

#fe{
font-size: 90px;
}

#sever{
color:aquamarine;
}

*{
background-color: beige;
}

Document

前端开发

后端开发

在这里插入图片描述


复合选择器

  • 复合选择器:将之前学习的基础选择器进行组合

后代选择器通过子元素找父元素

Document
  • 吃饭
  • 吃饭
  • 吃饭
  1. 吃饭
  2. 吃饭
  3. 吃饭

在这里插入图片描述

通过选择器的组合

Document
  • 吃饭
  • 吃饭
  • 吃饭
  1. 吃饭
  2. 吃饭
  3. 吃饭

在这里插入图片描述


给超链接文字换颜色

Document
  • 吃饭
  • 吃饭
  • 吃饭
  1. 吃饭
  2. 吃饭
  3. 吃饭
  4. 吃饭

在这里插入图片描述


伪类选择器

伪类选择器:用来定义元素状态

链接伪类选择器

a:link 选择未被访问过的链接 a:visited 选择已被访问过的链接 a:hover 选择鼠标指针悬停上的链接 a:active 选择活动链接(鼠标按下但未弹起)
现在我们要使用伪类选择器来实现: 默认时刻超链接展示黑色 当鼠标悬停到上面时,此时展示红色 按下鼠标时展示绿色
Document Aileen

在这里插入图片描述


按钮点击样式设置

Document

/* 设置按钮的样式 */
input {
color: crimson;

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注鸿蒙)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

/title>

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 在强化学习中,迷宫问题是一个经典的示例,用于解释强化学习的基本原理。在实现深入浅出强化学习:原理入门中,作者在第35页介绍了如何构建一个简单的迷宫,并使用表格型方法来解决寻宝问题。 首先,我们需要构建一个迷宫环境。迷宫可以表示为一个方格矩阵,其中包含障碍物、奖励以及终点位置。通过定义迷宫的尺寸以及具体的障碍物、奖励和终点位置,我们可以创建一个迷宫环境。 接下来,我们可以使用表格型方法解决寻宝问题。在表格型方法中,我们使用一个表格来表示智能体的价值函数或者Q函数。每个表格项表示在某个状态下采取某个动作的预期回报。 在开始之前,我们需要初始化所有表格项的值为0或者任意随机值。然后可以通过迭代更新表格中的项来得到更准确的估计值。 在每个时间步中,智能体会根据当前状态选择一个动作,并执行它。执行动作后,智能体会观察到一个新的状态以及相应的奖励。根据观察到的奖励和下一个状态,智能体可以使用贝尔曼方程来更新表格中的值。 重复这个过程直到达到预定的终止条件。通过不断迭代更新表格中的值,智能体可以学习到最优策略,使得它能够在迷宫中找到最有利的路径以获取最大的总回报。 通过实现这个迷宫构建和利用表格型方法解决寻宝问题的过程,我们可以更好地理解强化学习的原理和应用。这个简单的示例可以作为学习和研究强化学习的起点,为进一步深入探索提供基础。 ### 回答2: 迷宫是强化学习中经常用来模拟环境的一种方式。通过构建迷宫,我们可以利用表格型方法解决寻宝问题,即使用简单的表格来存储环境、决策和奖励信息。 迷宫一般包括一个正方形的网格,其中有起点、终点和障碍物。我们可以使用数字表示不同的状态,例如起点为0,终点为9,障碍物为-1。除此之外,我们还需要定义动作的种类,例如上、下、左、右,用数字1、2、3、4分别表示。同时,我们需要为每个动作定义相应的奖励,例如到达终点的奖励为100,碰到障碍物的奖励为-10。 在解决迷宫问题时,我们可以利用表格方法中的Q-learning算法。Q-learning使用一个Q表格来存储每个状态下每个动作的Q值,其中Q值是根据当前状态和动作的奖励计算得出的。初始时,Q表格的值可以随机初始化。 在进行训练时,我们可以通过一系列的迭代过程来更新Q表格的值。每次迭代中,我们从起点开始,在每个状态下根据当前的Q表格选择相应的动作,并根据动作的奖励计算下一个状态的Q值。然后,将新的Q值更新到Q表格中。通过多次迭代,Q表格的值会逐渐趋于稳定。 在利用训练好的Q表格解决迷宫问题时,我们可以根据当前的状态查找Q表格中相应的最优动作,并执行该动作。这样,agent就能够根据学习到的知识在迷宫中寻宝。 利用表格型方法解决迷宫问题是强化学习中的一种经典方法,它可以帮助我们理解强化学习的基本原理。通过构建迷宫、定义奖励和动作,并使用Q-learning算法进行训练,我们能够获得一个可以解决寻宝问题的agent。 ### 回答3: 在深入浅出强化学习:原理入门这本书的第35页上,介绍了如何利用表格型方法解决迷宫寻宝问题。这个问题可以用一个迷宫来建模表示,迷宫由一个二维的矩阵组成,每个位置可以是一个墙壁、一个通道或者是一个宝藏。 为了解决这个问题,我们可以使用Q-learning算法。Q-learning是一种基于值函数的强化学习算法,它通过不断更新值函数的估计来实现智能体的决策。 首先,我们需要定义一个Q表格,它是一个二维矩阵,其中行表示智能体所处的位置,列表示可能的动作。初始时,Q表格的所有元素都初始化为0。 然后,我们需要定义一些参数,如学习率α、折扣因子γ和探索率ε。学习率决定了每次更新的幅度,折扣因子决定了对未来奖励的重视程度,探索率决定了智能体在探索和利用之间的权衡。 接下来,我们开始训练智能体。在每次训练中,智能体会观察当前的状态,并根据探索率决定是进行探索还是利用Q表格来选择动作。如果进行探索,智能体会随机选择一个动作;如果利用Q表格,智能体会选择具有最高Q值的动作。 然后,智能体执行选择的动作,并观察新的状态和奖励。根据Q-learning算法,智能体会根据当前状态、选择的动作、新的状态和奖励来更新Q表格的值。更新的方式是通过下面的公式进行计算: Q(s,a) = (1-α) * Q(s,a) + α * (r + γ * maxQ(s',a')) 其中,s表示当前状态,a表示选择的动作,r表示当前状态下的奖励,s'表示新的状态,maxQ(s',a')表示新的状态下的最大Q值。 智能体会不断地在迷宫中移动,直到找到宝藏或者超过最大迭代次数。在训练的过程中,智能体的Q表格会逐渐收敛,最终可以达到一种最佳策略,即通过Q表格可以选择出最优的动作来解决寻宝问题。 这就是如何利用表格型方法解决迷宫寻宝问题。通过不断地训练和更新Q表格,智能体可以逐渐学习到最优的策略,从而成功找到宝藏。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值