【前端寻宝之路】总结学习使用CSS的引入方式(1),大厂面试经验分享

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新HarmonyOS鸿蒙全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img

img
img
htt

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上鸿蒙开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip204888 (备注鸿蒙)
img

正文

bare of几乎没有,缺乏

文章目录

CSS

  • 层叠样式表(Cascading Style Sheets)
👉CSS能够对网页中元素位置的排版进行像素级精确控制,实现美化页面的效果,能够做到页面的样式和结构分离.
  • css控制页面的展示效果
  • html 决定页面结构
Document

hello world

在这里插入图片描述

Document

hello world

在这里插入图片描述

Document

hello world

Aileen

你好

在这里插入图片描述


选择器+{一条/N条声明}

  • 选择器(selector)决定针对谁修改使用:区分键值对,使用:区分键(property)和值(value)
  • 声明决定修改啥
  • 声明的属性是键值对,
  • selector{ property:value }
    在这里插入图片描述

CSS引入方式

内部样式表

  • 将css嵌套到html中 (通过style)标签嵌套
  • 在这里插入图片描述

行内样式表

在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注鸿蒙)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

统化的资料的朋友,可以添加V获取:vip204888 (备注鸿蒙)**
[外链图片转存中…(img-gsj5TFXa-1713603313052)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

基于强化学习的迷宫寻宝是一种常见的强化学习应用。在这个应用中,智能体需要在迷宫中找到宝藏,并且需要尽可能快地找到它。在这个过程中,智能体需要学习如何在迷宫中移动,以及如何在不同的位置上采取不同的行动。这个过程可以通过两种不同的强化学习算法来实现:Sarsa和Q-Learning。 Sarsa算法是一种在线学习算法,它可以在智能体与环境交互的同时进行学习。在Sarsa算法中,智能体会根据当前状态和行动来更新它的策略,并且会在下一个状态和行动中使用这个策略。这个过程会一直持续到智能体找到宝藏或者达到了最大的迭代次数。 Q-Learning算法是一种离线学习算法,它可以在智能体与环境交互之后进行学习。在Q-Learning算法中,智能体会根据当前状态和行动来更新它的价值函数,并且会在下一个状态中选择最大的价值函数来更新策略。这个过程会一直持续到智能体找到宝藏或者达到了最大的迭代次数。 下面是一个基于Sarsa算法的迷宫寻宝的Python代码示例: ```python import numpy as np # 定义迷宫 maze = np.array([ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 0, 1, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 1, 1, 1, 1, 1, 0, 1, 0], [0, 1, 0, 0, 0, 0, 1, 0, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 1, 0, 0, 0, 0, 1, 0, 1, 0], [0, 1, 1, 1, 1, 1, 1, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]) # 定义起点和终点 start = (1, 1) end = (8, 8) # 定义动作和策略 actions = ['up', 'down', 'left', 'right'] policy = np.zeros((10, 10, 4)) q_table = np.zeros((10, 10, 4)) # 定义参数 alpha = 0.1 gamma = 0.9 epsilon = 0.1 max_iter = 1000 # 定义Sarsa算法 def sarsa(): for i in range(max_iter): # 初始化状态和行动 state = start action = np.random.choice(actions) while state != end: # 选择行动 if np.random.uniform() < epsilon: action = np.random.choice(actions) else: action = actions[np.argmax(q_table[state[0], state[1]])] # 更新状态和行动 next_state = tuple(np.array(state) + np.array([0, -1]) * (action == 'up') + np.array([0, 1]) * (action == 'down') + np.array([-1, 0]) * (action == 'left') + np.array([1, 0]) * (action == 'right')) next_action = np.random.choice(actions) if np.random.uniform() < epsilon else actions[np.argmax(q_table[next_state[0], next_state[1]])] # 更新Q值 q_table[state[0], state[1], actions.index(action)] += alpha * (maze[next_state[0], next_state[1]] + gamma * q_table[next_state[0], next_state[1], actions.index(next_action)] - q_table[state[0], state[1], actions.index(action)]) # 更新状态和行动 state = next_state action = next_action # 运行Sarsa算法 sarsa() # 输出策略 for i in range(10): for j in range(10): policy[i, j, np.argmax(q_table[i, j])] = 1 print(policy[:, :, 0], '\n', policy[:, :, 1], '\n', policy[:, :, 2], '\n', policy[:, :, 3]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值