既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
方法一:拉链法
所谓拉链法,字面意思就是将冲突的数据拉开,“链”就是【链表】的意思,将指向索引1的第一个学生的键值之后再设计一个next指针,指向下一个学生也是指向索引1的键值,这就形成了一个链表的形状,具体看下图即可👇
方法二:线性探测法
何所谓线性探测法,也就是成一个线状的趋势去探测,是否有下一个空位置给冲突的数据暂时存放,如果表中有空位子,就不用将他们一定要挤在一起形成一个链状了,因为链表太长是会浪费空间的,
讲得通俗一点,也就是你去一个食堂打菜,大家都喜欢在5号窗口打菜,可能是因为这个阿姨手不抖,但旁边的4号窗却只有两三人而已,有时候也会出现空位,那为什么一定要把队伍排得那么长呢,饭有的吃就不错了,万一那个阿姨手也不抖呢,何不去尝试一下😻
一样,也以图的形式展示给大家,这里要注意,只能往后找,不能往前找,可以看出下标0位置是空着的
三、有哪些哈希结构?
常见的三种哈希结构
- 数组
- set
- map
数组没什么好说的,我们主要来说一说set和map,均以表格的形式呈现📋
1、set
集合 | 底层实现 | 是否有序 | 是否可重复 | 数值可否更改 | 查询效率 | 增删效率 |
---|---|---|---|---|---|---|
std::set | 红黑树 | 有序 | 否 | 否 | O(nlogn) | O(nlogn) |
std::multiset | 红黑树 | 有序 | 是 | 否 | O(nlogn) | O(nlogn) |
std::unordered_set | 哈希表 | 无序 | 是 | 否 | O(1) | O(1) |
- 我们可以看到unordered_set它是无序的,但是set和multiset确实有序的,这个我在C++STL【容器】详解中也做过介绍✏️,因为它们和map一样,底层实现都是红黑树,即所谓的平衡二叉搜索树,所以其key值是有序的,但不可以修改,否则会导致整棵树的错乱,所以只能删除和增加
2、map
映射 | 底层实现 | 是否有序 | 是否可重复 | 数值可否更改 | 查询效率 | 增删效率 |
---|---|---|---|---|---|---|
std::map | 红黑树 | key有序 | key不可重复 | key不可修改 | O(nlogn) | O(nlogn) |
std::multimap | 红黑树 | key有序 | key不可重复 | key不可修改 | O(nlogn) | O(nlogn) |
std::unordered_map | 哈希表 | key无序 | key不可重复 | key不可修改 | O(1) | O(1) |
四、哈希表有哪些优势和劣势?
1、优势(advantage)
- 如果你需要在1-10这10个数中寻找5很容器,但是让你在1-4,294,967,296中找一个数却很是困难,但是哈希表可以做到,加入你用枚举去实现的话,时间复杂度可能要O(n),但是如果用哈希表去实现的话,时间复杂度却只需要O(1),大家说是不是更加优化了呢。其实现的原理便是快速判断一个元素是否出现集合里
2、劣势(disadvantage)
- 哈希表它虽然查找很快,但是它的空间复杂度却不低,因为需要用set或map来存放数据,才能实现快速的查找,换句话来说就是牺牲了✂️空间换取了时间
五、在实际问题中怎么解决有关哈希表的问题?
1、干货讲解
什么时候用哈希表呢?【当我们需要查询一个元素是否出现过,或者一个元素是否在集合里的时候,就要第一时间想到哈希法,因其可以快速判断一个元素是否出现集合里】
教大家一个小秘诀,在实际的问题中,如果您碰到了使用集合解决哈希问题的时候,优先使用unordered_set,因其查、增删的效率是最高的;如果集合是有序的,那就使用set;不仅是有序而且要重复数据的话,那就使用multiset
那么再来看一下map ,map 是一个key value的数据结构,map中,对key是有限制,我们从上表中也可以看出对value没有限制的,因为key的存储方式使用红黑树实现的,所以在做题的时候如果遇到需要使用key value结构来对应寻找数据时,就可以使用map相关的哈希表结构
之前有讲过一道题电话号码的字母组合,就是用map去存储每个数字所对应的字符串,这样就可以根据具体的数字去迅速对应到与之相对应的数据了,但是set集合却做不到这个,因为set里面放的元素只能是一个key值,当需要两数据相对应时就不要使用set了,使用map更为合适,但是选择map、multimap还是unordered_map呢,这就需要大家自己思考并根据实际题目看key值是否有序还是无序了
虽然我们没有讲数组,但设计哈希表的题目中利用数组解题的还是有,因为使用数组就不需要利用哈希映射了,这样便可以节省空间复杂度,一般数组用在数据量较小的题目中
2、具体题目简述
光说不练假把式,我们到具体题目中看个两题感受一下📇
第一题
- 看题,求两个数组的交集,很明显这是两个集合,而且没有所谓的key value接口果断选择效率最高的unordered_set,但是看下面的数据量并不是成千上亿那么大🙌,所以这题用数组其实更为合适,具体思路不做讲解,后续会更新,给一下代码
vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
unordered_set<int> result;
unordered_set<int> num(nums1.begin(),nums1.end()); //把nums1中数放入num集合
//遍历nums2数组,与num集合做比较
for(int i : nums2)
{
if(num.find(i) != num.end())
//没有到num的结尾就发现了异常情况
result.insert(i); //将交集元素放入result集合
}
//最后以一个vector容器的形式返回
return vector<int>(result.begin(),result.end());
}
第二题
- 这是力扣的第一题,相信大家都做过,不知你是否试过用哈希表来做呢,看题,很明显,这是一个key value结构,求出两个目标整数相加为目标数target,返回这两个数所对应的下标,所以我们应该使用map,看示例,并不是有序的,因此果断选择unordered_map,相信很多小伙伴之前都是用的暴力枚举,采用数组的形式来解出这道题的,但是我们通过观察这道题的数据,是不是很大,104,109,所以时间复杂度直奔O(n2),哈希表就是题目最下方的进阶做法,时间复杂度为O(n),空间复杂度也为O(n),因为需要额外的数组来存放数据。一样不做细接,只给代码
vector<int> twoSum(vector<int>& nums, int target) {
std::unordered_map <int,int> map;
for(int i = 0; i < nums.size(); i++) {
// 遍历当前元素,并在map中寻找是否有匹配的key
auto iter = map.find(target - nums[i]);
if(iter != map.end()) {
return {iter->second, i};
}
// 如果没找到匹配对,就把访问过的元素和下标加入到map中
map.insert(pair<int, int>(nums[i], i));
}
return {};
}
总结与回顾
怎么样,在看了本文和这两题之后是不是有点豁然开朗的感觉,好像自己也有点会做哈希表的题目了,那就赶快去再刷几道题热热身吧,如果您还是有点不太清楚,可以再去查询一下相关的资料,或者关注我,后续会有哈希表相关的力扣题解,我也是刚刚开始学习,可能讲的不是很清楚,但我们可以通过刷题来加深自己对知识的理解,加油,一起学习和进步📕
相关题目
1.两数之和
15. 三数之和
18. 四数之和
242.有效的字母异位词
349. 两个数组的交集
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
…(img-Qro4reTz-1715656126226)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新