先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新HarmonyOS鸿蒙全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上鸿蒙开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip204888 (备注鸿蒙)
正文
第三章 可视化数据
3.1 matplotlib
3.2 条形图
3.3 线图
…
第4章 线性代数
4.1 向量
4.2 矩阵
4.3 延伸学习
第5章 统计学
5.1 描述单个数据集
5.1.1 中心倾向
5.1.2 离散度
5.2 相关
5.3 辛普森悖论
5.4 相关系数其他注意事项
5.5 相关和因果
5.6 延伸学习
第6章 概率
6.1 不独立和独立
6.2 条件概率
6.3 贝叶斯定理
6.4 随机变量
6.5 连续分布
6.6 正态分布
6.7 中心极限定理
6.8 延伸学习
第7章 假设与推断 75
7.1 统计假设检验
7.2 案例:掷硬币
7.3 置信区间
7.4 P-hacking
7.5 案例:运行A/B测试
7.6 贝叶斯推断
7.7 延伸学习
第8章 梯度下降
8.1 梯度下降的思想
8.2 估算梯度
8.3 使用梯度
8.4 选择正确步长
8.5 综合
8.6 随机梯度下降法
8.7 延伸学习
第9章 获取数据
9.1 stdin和stdout
9.2 读取文件
9.2.1 文本文件基础
9.2.2 限制的文件
9.3 网络抓取
9.3.1 HTML 和解析方法
9.3.2 案例:关于数据的O’Reilly图书
9.4 使用API
9.4.1 JSON(和XML)
9.4.2 使用无验证的API
9.4.3 寻找API
9.5 案例:使用Twitter API
9.6 延伸学习
第10章 数据工作
10.1 探索你的数据
10.1.1 探索一维数据
10.1.2 二维数据
10.1.3 多维数据
10.2 清理与修改
10.3 数据处理
10.4 数据调整
10.5 降维
10.6 延伸学习
第11章 机器学习
11.1 建模
11.2 什么是机器学习
11.3 过拟合和欠拟合
11.4 正确性
11.5 偏倚- 方差权衡
11.6 特征提取和选择
11.7 延伸学习
第12章 k近邻法
12.1 模型
12.2 案例:最喜欢的编程语言
12.3 维数灾难
12.4 延伸学习
第13章 朴素贝叶斯算法
13.1 一个简易的垃圾邮件过滤器
13.2 一个复杂的垃圾邮件过滤器
13.3 算法的实现
13.4 测试模型
13.5 延伸学习
第14章 简单线性回归
14.1 模型
14.2 利用梯度下降法
14.3 最大似然估计
14.4 延伸学习
第15章 多重回归分析
15.1 模型
15.2 最小二乘模型的进一步假设
15.3 拟合模型
15.4 解释模型
15.5 拟合优度
15.6 题外话:Bootstrap
15.7 回归系数的标准误差
15.8 正则化
15.9 延伸学习
第16章 逻辑回归
16.1 问题
16.2 Logistic函数
16.3 应用模型
16.4 拟合优度
16.5 支持向量机
16.6 延伸学习
第17章 决策树
17.1 什么是决策树
17.2 熵
17.3 分割之熵
17.4 创建决策树
17.5 综合运用
17.6 随机森林
17.7 延伸学习
第18章 神经网络
18.1 感知器
18.2 前馈神经网络
18.3 反向传播
18.4 实例:战胜CAPTCHA
18.5 延伸学习
第19章 聚类分析
19.1 原理
19.2 模型
19.3 示例:聚会
19.4 选择聚类数目k
19.5 示例:对色彩进行聚类
19.6 自下而上的分层聚类
19.7 延伸学习
第20章 自然语言处理
20.1 词云
20.2 n-grams模型
20.3 语法
20.4 题外话:吉布斯采样
20.5 主题建模
20.6 延伸学习
第21章 网络分析
21.1 中介中心度
21.2 特征向量中心度
21.2.1 矩阵乘法
21.2.2 中心度
21.3 有向图与PageRank
21.4 延伸学习
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注鸿蒙)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注鸿蒙)
[外链图片转存中…(img-iPQSpisP-1713627675649)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!