先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip204888 (备注大数据)
正文
调用命令:
labelimg
随后跳出程序,界面如下:
我们还可以使用以下调用命令:
labelimg JPEGImages classes.txt
打开 LabelImg
工具的同时打开 JPEGImage
文件夹,并初始化 classes.txt
里面定义的类(这样我们在标注图片的时候就不需要手动输入标签)
另外,为了更方便的标注图片,首先我们需要在LabelImg
工具的view
选项卡中设置以下几项内容:
2 标注格式
LabelImg
是一款开源的数据标注工具,可以标注三种格式:
PascalVOC
标签格式,保存为xml
文件
形式如下:
<?xml version='1.0' encoding='us-ascii'?>
<annotation>
<folder>hat01</folder>
<filename>000000.jpg</filename>
<path>D:\dataset\hat01\000000.jpg</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>947</width>
<height>1421</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>hat</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>60</xmin>
<ymin>66</ymin>
<xmax>910</xmax>
<ymax>1108</ymax>
</bndbox>
</object>
</annotation>
YOLO
标签格式,保存为txt
文件
形式如下:
0 0.512143611404435 0.4130893736805067 0.8975712777191129 0.733286418015482
以空格隔开,分别表示 类别
(从0开始)、归一化后框的 x_center
、归一化后框的 y_center
、归一化后框的 w
、归一化后框的 h
- 归一化坐标是一种将物体位置和尺寸描述为相对图像大小的方法,常用于目标检测和计算机视觉任务中。在归一化坐标下,物体位置和尺寸都变成了 0 到 1 之间 的值,方便神经网络进行处理。如果将这些值直接传递给神经网络,由于不同图像尺寸和物体大小的差异,会导致模型难以处理。
- 因此,我们需要将这些值转换成归一化坐标,分别将
x_center
、y_center
、w
、h
除以图像的宽width
或高height
,即x_center/width
、y_center/height
、w/width
、h/height
CreateML
标签格式,保存为json
格式
形式如下:
[{"image": "000000.jpg", "annotations": [{"label": "hat", "coordinates": {"x": 490.3947368421052, "y": 593.5526315789473, "width": 832.0, "height": 1023.9999999999999}}]}]
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)**

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
中...(img-LfAGcSKG-1713306779647)]
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**