在高并发、高性能、高可用 三高项目中如何设计适合实际业务场景的分布式id(一)(1)

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

  1. 生成策略: 不同的UUID版本有不同的生成策略。Version 1和2基于时间和节点(如MAC地址)生成,可能在某种程度上泄露系统信息。Version 4是随机生成的,但完全随机的UUID在数据库插入时可能导致性能问题。选择合适的UUID版本以满足特定需求是一个挑战。
  2. 唯一性冲突: 尽管UUID的冲突概率非常低,但在极端情况下仍有可能发生。特别是在大量生成UUID的系统中,需要采取措施来检测和处理潜在的冲突。
  3. 业务逻辑整合: 在某些业务场景中,可能需要将UUID与其他业务逻辑或系统整合。例如,将UUID用作数据库主键时,可能需要考虑如何与其他表或系统进行有效的关联和查询。
  4. 安全性考虑: 如果UUID被用作安全令牌或访问控制的一部分,那么它们的随机性和不可预测性就变得至关重要。在这种情况下,需要确保使用的UUID生成算法符合安全标准,并且难以被攻击者猜测或预测。

为了缓解这些问题和挑战,可以采取一些策略,如使用二进制格式存储UUID以节省空间、优化数据库索引策略、选择适当的UUID版本以及实施冲突检测和处理机制等。此外,还可以考虑将UUID与其他标识符(如业务主键)结合使用,以平衡唯一性、可读性和性能的需求。

UUID(Universally Unique Identifier)适合在多种场景下使用,特别是那些需要全局唯一标识符的场合。以下是一些常见的使用场景:

  1. 数据库主键:在数据库中,UUID可以用作表的主键,确保每个记录具有唯一的标识符。这有助于避免冲突和重复,特别是在分布式数据库环境中。
  2. 分布式系统:在分布式系统中,UUID用于唯一标识各个节点、实体或资源。由于UUID的生成是分布式的,不需要中央协调机构,因此非常适合在分布式环境中进行准确的识别和跟踪。
  3. Web开发:在Web开发中,UUID可以用作会话标识符、临时文件名或URL的一部分,用于跟踪用户会话、生成唯一的资源标识符等。
  4. 软件开发:在软件开发中,UUID可用于生成唯一的文件名、标识插件或组件、识别对象实例等。这有助于确保软件组件的唯一性和可追踪性。
  5. 数据同步和复制:在数据同步和复制过程中,UUID可以用于标识不同数据源或副本中的记录,确保数据在多个系统之间的一致性和唯一性。

此外,UUID还适合在不需要明确时间上下文或排序的场景中使用。例如,在微服务架构中,UUID可以确保全局ID的唯一性,避免主键自增ID的一些缺陷。然而,需要注意的是,UUID并不适合作为需要频繁排序或具有明确时间顺序要求的场景中的主键,因为UUID是无序的。在这些情况下,可以考虑使用其他类型的标识符(如时间戳或自增ID)。

总之,UUID提供了一种可靠的方法来生成全局唯一的标识符,适用于分布式系统、数据库管理、软件开发以及其他需要唯一标识的场景。但在使用时,也需要根据具体的应用场景和需求来权衡其优缺点。


    @Test
    public void uuidExample(){

        //生成一个随机的UUID(第4版)
        UUID uuid = UUID.randomUUID();

        System.out.println("Generated UUID:"+uuid.toString());

        //也可以从字符串中解析UUID
        String uuidString = "f47ac10b-58cc-4372-a567-0e02b2c3d479";
        UUID parsedUUID = UUID.fromString(uuidString);

        // 输出解析后的UUID
        System.out.println("Parsed UUID: " + parsedUUID);
    }

shortuuid

ShortUUID 是一种用于生成全局唯一标识符(GUID)的算法和格式,其特别之处在于生成的标识符比传统的 UUID(Universally Unique Identifier)更短,且长度固定为22个字符。ShortUUID 是基于 UUID Version 4 设计的,并使用了特定的 alphabet(字符集)来缩短表示长度。

组成与生成步骤

  1. 初始值

    • ShortUUID 的初始值基于 UUID Version 4。UUID Version 4 是一种基于随机数的 UUID,其生成过程中包含了足够的随机性以确保全局唯一性。
  2. Alphabet 变量长度

    • ShortUUID 使用了一个预定义的 alphabet,其长度固定为 57 个字符。这个 alphabet 通常由小写字母、大写字母和数字组成,有时还可能包含一些特殊字符,以提供足够的字符组合空间。
  3. ID 长度计算

    • 尽管 ShortUUID 的最终长度是固定的22个字符,但实际上,这个长度并不直接由 alphabet 的长度计算得出。相反,它是基于所需的唯一性级别和可接受的冲突概率来确定的。需要注意的是,将 128 位的 UUID 压缩到 22 个字符中,必然会导致一定的信息丢失和冲突风险。
  4. DivMod 映射

    • ShortUUID 使用 DivMod(欧几里得除法和模)算法来将 UUID 的数值映射到预定义的 alphabet 上。这个过程涉及将 UUID 转换为一个大整数,然后反复应用 DivMod 算法来生成一系列索引值,这些索引值随后被转换为 alphabet 中的对应字符。

特点

  • 全局唯一性:尽管 ShortUUID 比传统的 UUID 短得多,但它仍然旨在提供全局唯一性。然而,由于信息压缩,ShortUUID 的唯一性不如完整长度的 UUID。
  • 长度固定:ShortUUID 的长度固定为 22 个字符,这使得它在存储和传输时更加高效。
  • 基于 UUID:ShortUUID 是基于 UUID Version 4 设计的,因此它继承了 UUID 的一些优点,如跨平台兼容性和广泛的接受度。
  • 冲突风险:由于 ShortUUID 的长度较短且信息被压缩,因此存在比传统 UUID 更高的冲突风险。这种风险在高并发或大规模应用中尤为显著。
  • 不可逆性:ShortUUID 的生成过程是不可逆的,即无法从 ShortUUID 还原出原始的 UUID。

应用
ShortUUID 适用于那些需要唯一标识符但又希望减少存储和传输开销的场景。然而,由于其潜在的冲突风险,使用 ShortUUID 时需要谨慎评估其适用性,特别是在对唯一性要求极高的系统中。常见的应用场景包括短链接生成、内部标识符等。在这些场景中,ShortUUID 提供了一种在可接受的冲突概率下减少标识符长度的有效方法。

 public  static String  generateShortUuid(){
        StringBuffer  shortBuffer = new StringBuffer();
        String uuid = UUID.randomUUID().toString().replace("-","");
        for (int i=0;i<8;i++){
            String str = uuid.substring(i\*4,i\*4+4);
            int x = Integer.parseInt(str,16);
            shortBuffer.append(chars[x % 0x3E]);

        }
        return shortBuffer.toString();
 }

KSUID

KSUID是由Segment.io开发的一种分布式ID生成方案。它的设计目标是为了提供高性能、唯一性,并确保ID的可排序性。KSUID生成的ID是一个全局唯一的字符串,这使得它非常适用于各种需要唯一标识符的场合。

组成

  1. 时间戳(32位)

    • 使用32位来存储秒级的时间戳。
    • 表示自协调世界时(UTC)1970年1月1日以来的秒数。
    • 与传统的UNIX时间戳相比,KSUID使用了更长的时间戳,因此可以支持更长的时间范围。
  2. 随机字节(16位)

    • 这部分是为了增加ID的唯一性而随机生成的16位字节。
  3. 附加信息(可选)

    • KSUID的格式允许包含附加的信息,例如节点ID或其他标识符。
    • 这部分是可选的,具体是否使用取决于特定的应用场景和需求。

特点

  • 全局唯一性:由于KSUID结合了时间戳和随机字节,它生成的ID在全球范围内都是唯一的。
  • 可排序性:由于KSUID的ID是按照时间顺序生成的,因此它们可以很方便地按照生成的顺序进行排序和比较。
  • 去中心化:KSUID不依赖于任何中央化的ID生成服务,这使得它在分布式系统中特别有用。
  • 高性能:KSUID的生成算法设计得非常简单和高效,确保在高并发环境下也能快速生成ID。

应用
KSUID广泛应用于需要全局唯一标识符的各种场景,特别是那些要求ID具有可排序性的场合。例如,在分布式数据库、日志记录、消息队列等领域,KSUID都是一个非常有用的工具。

XID

XID是一个用于生成全局唯一标识符(GUID)的库。它采用基于时间的、分布式的ID生成算法,旨在确保高性能和唯一性。XID生成的ID是一个64位的整数,由时间戳、机器ID和序列号三部分组成。

XID的组成

  1. 时间戳(40位)

    • 使用40位存储纳秒级的时间戳。
    • 支持约34年的时间范围。
    • 与雪花算法相比,具有更高的时间分辨率。
  2. 机器ID(16位)

    • 用于表示分布式系统中机器的唯一标识符。
    • 每个机器应具有唯一的机器ID,可以通过手动配置或自动分配获得。
  3. 序列号(8位)

    • 在同一纳秒内生成的序列号。
    • 如果在同一纳秒内生成的ID数量超过了8位能够表示的范围,会等待下一纳秒再生成ID。

XID的特点

  1. 长度短:生成的ID是一个64位的整数,相对较短,便于存储和传输。
  2. 有序:由于包含时间戳成分,生成的ID是趋势递增的,具有良好的有序性。
  3. 不重复:通过合理的分配机器ID和序列号,确保在分布式环境下生成的ID不重复。
  4. 时钟回拨处理:通过时间戳的随机数原子+1操作(但这里可能存在误解,因为通常时间戳不是随机数),可以在一定程度上避免时钟回拨问题。然而,这部分描述可能不够准确或完整,需要更多上下文来理解具体实现。

与其他算法的比较

与雪花算法相比,XID具有以下优势:

  • 更高的时间分辨率:使用纳秒级时间戳。
  • 适用于分布式环境下的ID生成需求。

然而,在唯一性方面,XID可能稍弱一些,因为它使用了较短的机器ID和序列号。这意味着在极端情况下(如大量机器在短时间内生成大量ID),可能存在ID冲突的风险。

XID库通常提供以下功能:

  1. 生成ID:根据当前时间戳、机器ID和序列号生成新的ID。
  2. 解析ID:将生成的ID解析回其组成成分,以便分析和调试。
  3. 验证ID:验证给定ID是否有效,即是否符合XID的格式和规范。

这些功能使得XID成为一个灵活且易于使用的ID生成解决方案,适用于各种分布式系统场景。

snowflake

Snowflake是Twitter开源的一种分布式ID生成算法,它的主要目标是在分布式系统中生成全局唯一的ID。Snowflake算法结合了时间戳、机器标识和序列号等元素,确保生成的ID既唯一又具有趋势递增的特性。这种设计使得Snowflake算法非常适用于需要高性能、低延迟和有序ID的场景,如数据库索引、分布式存储系统等。

Snowflake生成的ID是一个64位的整数,通常由以下几部分组成:

在这里插入图片描述

  1. 时间戳(Timestamp):占据ID的高位部分,用于记录ID生成的时间。时间戳的精度通常到毫秒级或纳秒级,这取决于具体实现。由于时间戳是递增的,因此可以保证生成的ID具有趋势递增的特性。
  2. 机器标识(Machine ID):用于标识生成ID的机器或节点。在分布式系统中,每台机器或节点都应该有一个唯一的标识,以确保不同机器生成的ID不会冲突。
  3. 数据中心标识(Data Center ID):可选的部分,用于标识生成ID的数据中心。这对于跨数据中心的分布式系统非常有用,可以确保不同数据中心生成的ID也是唯一的。
  4. 序列号(Sequence Number):在同一时间戳内,用于区分不同ID的序列号。当在同一时间戳内需要生成多个ID时,序列号可以确保这些ID的唯一性。

Snowflake算法的特点

  1. 全局唯一性:通过合理设计时间戳、机器标识和序列号的组合方式,确保在分布式系统中生成的ID是全局唯一的。
  2. 趋势递增:由于时间戳占据ID的高位部分,因此生成的ID具有趋势递增的特性。这对于数据库索引等场景非常有利,可以提高插入性能和减少索引的分裂与碎片化。
  3. 高性能与低延迟:Snowflake算法的设计目标之一就是高性能和低延迟。通过合理的位分配和算法优化,可以实现快速生成ID并降低对系统性能的影响。
  4. 安全性:与UUID相比,Snowflake算法不会暴露MAC地址等敏感信息,因此更安全。同时,生成的ID也不会过于冗余,可以节省存储空间和网络带宽。

Snowflake算法适用于需要在分布式环境下生成唯一ID的场景,如:

  1. 数据库主键生成:在分布式数据库中,可以使用Snowflake算法生成主键ID,确保不同节点生成的主键不会冲突。
  2. 分布式存储系统:在分布式存储系统中,可以使用Snowflake算法为文件或对象生成唯一的标识符。
  3. 消息队列:在分布式消息队列中,可以使用Snowflake算法为消息生成唯一的ID,以便进行追踪和排序。
  4. 日志系统:在分布式日志系统中,可以使用Snowflake算法为日志条目生成唯一的ID,方便进行日志聚合和查询。

Snowflake是一种高性能、低延迟和趋势递增的分布式ID生成算法。它结合了时间戳、机器标识和序列号等元素,确保生成的ID既唯一又具有有序性。Snowflake算法适用于需要在分布式环境下生成唯一ID的场景,如数据库索引、分布式存储系统等。与UUID相比,Snowflake算法更安全且生成的ID更简洁。

由于雪花算法的一部分id序列是基于时间戳的, 那么就会存在时钟回拨的问题。

什么是时钟回拨问题呢。 首先我们来看下服务器上的时间突然退回之前的时间:

  • 可能是人为调整时间,
  • 也可能是服务器之间的时间校对。

具体来说,时钟回拨(Clock Drift) 指的是系统时钟在某个时刻向回调整, 即时间向过去移动。 时钟回拨可能发生在分布式系统中的某个节点上, 这可能是由于时钟同步问题、时钟漂移或其他原因导致的。

时钟回拨可能对系统造成一些问题, 特别是对于依赖与时间顺序的应用程序或算法。

在分布式系统中, 时钟回拨可能导致一下问题

  • ID 冲突: 如果系统使用基于时间的算法生成唯一ID(如雪花算法),时钟回拨可能导致生成的ID与之前生成的ID冲突,破坏了唯一性。
  • 数据不一致:时钟回拨可能导致不同节点之间的时间戳不一致,这可能影响到分布式系统中的时间相关操作,如事件排序、超时判断等。数据的一致性可能会受到影响。
  • 缓存失效:时钟回拨可能导致缓存中的过期时间计算错误,使得缓存项在实际过期之前被错误地认为是过期的,从而导致缓存失效。

为了应对时钟回拨问题,可以采取以下措施

  • 使用时钟同步服务:通过使用网络时间协议(NTP) 等时钟同步服务,可以将节点的时钟与参考时钟进行同步,减少时钟回拨的可能性。
  • 引入时钟漂移校正:在分布式系统中,可以通过周期性地校正节点的时钟漂移,使其保持与其他节点的时间同步。
  • 容忍时钟回拨:某些应用场景下,可以容忍一定范围的时钟回拨。在设计应用程序时,可以考虑引入一些容错机制,以适应时钟回拨带来的影响。

总之, 时钟回拨是分布式系统中需要关注的一个问题, 可能对系统的时间相关操作、数据一致性和唯一ID生成等方面产生影响。

通过使用时钟同步服务、时钟漂移校正和容忍机制等方法, 可以减少时钟回拨带来的问题。

参考leaf, snowflake本身的容错有两点,一是防止自身节点时钟回拨, 另一点是防止节点自身时钟的不正确。

  • 防止节点自身时钟回拨

Snowflake通过定时上报当前时间并在etcd或zookeeper等分布式协调服务中记录节点上次的时间来解决时钟回拨问题。当节点启动时,它会根据节点ID从etcd或zookeeper中取回之前的时间。如果检测到时钟回拨,Snowflake会采取相应的措施。如果回拨时间很少,Snowflake可以选择等待回拨时间过后,再正常启动。如果回拨过大,节点将直接启动失败并报错,此时需要人为介入处理。

此外,Snowflake还采用了一种策略来避免新节点和旧节点之间的时间冲突风险。当节点定时上报时间时,它可以选择上报当前时间加上一个时间间隔(now+interval)的方式。这样,新节点需要超过这个时间戳才能启动,从而避免了时间冲突的问题。

  • 防止节点时钟不正确

为了降低时钟错误的风险,Snowflake要求每个节点都会定期上报自己的节点信息(IP/Port)到etcd或zookeeper,并提供一个RPC方法以供外界获取本节点的时间戳。当一个新节点启动时,它会通过etcd或zookeeper注册的其他节点信息,并发调用RPC方法获取其他节点的时间戳,并进行一一对比。如果时间戳差异过大,则代表本节点时间戳可能有问题,直接报错并需要人为介入处理。

这种解决方案的准确性相对较高,因为它不是简单地取各个节点上报的时间戳进行判断,而是通过实时获取其他节点的时间戳进行对比。这可以减少由于各节点定期上报时间戳导致的时间差异,并提高判断时间偏差的准确性。

至于第一个节点时间戳错误的情况,虽然发生的几率较低,但Snowflake的解决方案会在启动正常节点时报错并需要人为介入。在这种情况下,可以停掉异常节点,然后逐个启动正常的新节点。第一个新节点启动时,由于etcd或zookeeper内没有其他节点信息,无需进行校验。

总的来说,Snowflake的时钟回拨解决方案通过结合定时上报时间、分布式协调服务和实时时间戳对比等方法,有效地减少了时钟回拨和时钟错误对分布式系统的影响。

Q: 为什么不采用把各个节点上报时间戳到etcd,新启动节点直接取 etcd 内的时间戳进行逐个判断呢?

主要考虑时间校准的准确性, 如果各节点定期上报时间戳, 各节点时间戳差异会比较大, 这会导致我们判断时间偏差的幅度不较大,准确性会下降。

Q: 如果第一个节点时间戳是错误的, 后续正确节点启动怎么办?

首先,这种情况发生的几率非常低并且此时我们启动正常节点时肯定会报错,人为介入。

报错时,直接停掉异常节点,然后逐个启动正常的新节点,第一个新节点启动时, etcd 内也没有其他节点信息,无需校验。

利用zookeeper 解决时钟回拨问题:

在使用ZooKeeper解决Snowflake时钟回拨问题时,我们主要利用ZooKeeper的分布式协调功能来同步和校验各个Snowflake节点的时间戳。以下是一个详细的解决方案:

  1. 节点时间上报与同步

步骤一: 每个Snowflake节点在启动时或定期(如每分钟)向ZooKeeper上报其当前的时间戳。这个时间戳可以包含节点的IP地址、端口号和时间戳值。

步骤二: ZooKeeper将这些时间戳存储在其数据结构中,例如使用ZNode来存储每个节点的时间戳信息。

  1. 节点时间校验

当一个新的Snowflake节点启动时,或者在运行过程中检测到可能的时钟回拨时,该节点会执行以下操作来进行时间校验:

步骤一: 节点从ZooKeeper中获取其他所有节点的时间戳信息。

步骤二: 节点比较自己的时间戳与其他节点的时间戳。如果发现自己的时间戳明显落后于其他节点(超过一个预设的阈值,如5分钟),则可能存在时钟回拨问题。

步骤三: 如果检测到时钟回拨,节点可以采取以下策略之一:

  • 等待策略:节点可以等待一段时间(超过回拨的时间差),然后再次尝试启动或继续操作。
  • 报错并停止:节点可以立即报错并停止运行,通知管理员进行手动干预。
  • 自动调整时间:在某些情况下,节点可以尝试自动调整其系统时间以与其他节点同步。但这通常不推荐,因为直接修改系统时间可能导致其他问题。

注意事项

  • 网络延迟:由于网络延迟的存在,不同节点之间的时间戳可能会有微小的差异。因此,在设置时间差阈值时需要考虑这一因素。
  • ZooKeeper的性能:ZooKeeper的性能和稳定性对于此解决方案至关重要。如果ZooKeeper集群出现问题,可能会影响到Snowflake节点的正常运行。
  • 安全性:确保ZooKeeper集群的安全性,防止恶意节点上报错误的时间戳信息。

优化策略

  • 使用更精确的时间同步协议:例如,可以使用NTP(网络时间协议)或PTP(精确时间协议)来同步节点的时间,而不是完全依赖ZooKeeper。
  • 增加时间戳上报的频率:通过更频繁地上报时间戳,可以更快地检测到时钟回拨问题。
  • 实现自动恢复机制:在检测到时钟回拨后,可以自动尝试重启节点或重新同步时间,以减少人工干预的需要。

总的来说,使用ZooKeeper来解决Snowflake时钟回拨问题是一个可行的方案,但需要根据实际情况进行配置和优化。

分布式id

数据库自增ID

在数据库设计中,主键自增索引是一种常见且方便的策略,用于为表中的每一行分配一个唯一的标识符。这种策略在多种数据库系统中都有支持,如MySQL、PostgreSQL、SQL Server等。主键自增索引不仅简化了数据插入的过程,还在某些场景下优化了数据存储和检索的性能。然而,它也有一些潜在的问题和限制,特别是在高并发和大数据量的环境中。

主键自增索引的特点

  1. 架构简单,易于实现:主键自增是最直接的ID生成策略之一。数据库负责为新插入的行生成唯一的ID,开发者无需编写额外的逻辑来生成或管理这些ID。
  2. ID有序递增,IO写入连续性好:由于ID是顺序生成的,数据的物理存储往往也是连续的,这有助于减少磁盘碎片,提高IO性能。
  3. INT和BIGINT类型占用空间较小:相比其他更复杂的主键生成策略(如UUID),INT和BIGINT类型的自增主键占用的存储空间较小。
  4. 易暴露业务量:由于ID是顺序递增的,外部观察者可以通过分析ID的增长速度来估算系统的业务量。
  5. 受到数据库性能限制:在高并发场景下,单一数据库实例可能无法快速生成和处理大量的自增ID,这可能成为系统的性能瓶颈。

主键自增索引的问题与挑战

  1. 主键冲突:虽然理论上BIGINT类型的自增主键可以支持非常大的数据量(2^64-1),但实际上,单个数据库表很难达到这个极限。然而,在分表或数据库迁移等场景中,如果不小心处理,可能会出现主键冲突的情况。例如,当两个表的自增主键序列意外地合并到一个表中时,就可能出现重复的ID。
  2. 扩展性问题:随着业务量的增长,单一数据库实例可能无法满足性能需求。虽然可以通过分库分表来扩展系统的处理能力,但这会增加系统的复杂性和维护成本。此外,分库分表后如何保证全局唯一的主键也是一个需要解决的问题。
  3. 安全性考虑:由于自增主键是顺序生成的,攻击者可能会利用这一点来探测系统的漏洞或进行其他形式的攻击。例如,他们可以尝试通过递增的ID来访问未授权的数据。

适用场景

  1. 中小规模应用:对于中小规模的应用,主键自增索引是一种简单且有效的选择,可以满足基本的数据存储和检索需求。
  2. 低并发场景:在低并发场景下,主键自增索引的性能瓶颈不明显,可以提供较好的性能表现。
  3. 业务逻辑简单:对于业务逻辑相对简单的应用,主键自增索引可以简化开发过程,提高开发效率。

需要注意的是,在选择主键自增索引时,应充分考虑其优缺点以及具体的业务需求和数据量。对于需要高并发处理、大数据量存储或复杂业务逻辑的应用,可能需要考虑其他更合适的主键生成策略。同时,在使用主键自增索引时,还需要注意数据库的性能监控和优化,以确保系统的稳定性和性能表现。

redis 分布式id

在分布式系统中,生成全局唯一的ID是一个常见的需求。相比数据库自增ID,使用Redis的原子操作(如INCR和INCRBY)来生成ID具有更好的性能和灵活性。Redis作为内存数据库,其读写速度远超传统磁盘数据库,且提供了丰富的原子操作,非常适合用于生成分布式ID。

然而,使用Redis作为ID生成器也存在一些挑战,如架构强依赖Redis可能导致单点问题,以及在流量较大的场景下网络耗时可能成为瓶颈。因此,在使用Redis生成分布式ID时,需要综合考虑系统架构、性能需求和网络环境等因素。

实现步骤

  1. 选择合适的Redis原子操作:INCR和INCRBY是Redis提供的两个原子操作,用于增加key对应的值。INCR将key的值增加1,而INCRBY可以将key的值增加指定的整数。根据具体需求选择合适的操作。
  2. 设置初始值和步长:在使用Redis生成ID之前,需要设置初始值和步长。初始值通常是0或1,步长可以根据需要进行设置。步长越大,每次生成的ID间隔越大,但可能会浪费更多的ID。
  3. 使用Redis客户端进行操作:在Java中,可以使用Redis客户端库(如Lettuce)来连接Redis并执行原子操作。Lettuce是一个高性能、线程安全的Redis客户端,支持同步、异步和响应式编程模型。
  4. 处理网络延迟和单点问题:为了降低网络延迟的影响,可以将Redis部署在与应用服务器相同的网络环境中。同时,为了避免单点问题,可以使用Redis集群或哨兵模式来提高可用性和容错性。
  5. 代码实现与测试:根据具体需求编写Java代码实现ID生成器,并进行充分的测试以确保其正确性和性能。

使用Lettuce客户端实现Redis分布式ID生成器

  1. 添加Lettuce依赖

首先,在项目的pom.xml(如果是Maven项目)或build.gradle(如果是Gradle项目)中添加Lettuce的依赖。

  1. 配置Redis连接

配置Redis连接,包括主机名、端口、密码(如果有)以及集群配置(如果使用Redis集群)。

  1. 实现ID生成器
import io.lettuce.core.RedisClient;  
import io.lettuce.core.RedisURI;  
import io.lettuce.core.api.StatefulRedisConnection;  
import io.lettuce.core.api.sync.RedisCommands;  
import io.lettuce.core.cluster.RedisClusterClient;  
import io.lettuce.core.cluster.api.sync.RedisAdvancedClusterCommands;  
  
import java.time.Duration;  
  
public class RedisDistributedIdGenerator {  
    private static final String ID\_KEY = "unique\_id";  
    private RedisAdvancedClusterCommands<String, Long> syncCommands;  
  
    public RedisDistributedIdGenerator(RedisClusterClient redisClient) {  
        // 配置连接超时时间等(可选) 
        RedisURI.Builder builder = RedisURI.Builder.redis("redis://localhost").withTimeout(Duration.ofSeconds(10));  
        // 如果使用密码,则添加密码配置(可选) 
        // builder.withPassword("yourpassword"); 
  
        // 配置集群节点(这里应该添加所有集群节点的信息) 
        redisClient.setDefaultTimeout(Duration.ofSeconds(10));  
        redisClient.setUri(builder.build());  
        // 这里只是示例,实际应用时需要配置所有的集群节点 
        // redisClient.reloadPartitions(); // 重新加载分区信息(如果需要) 
  
        // 建立连接 
        StatefulRedisConnection<String, Long> connection = redisClient.connect();  
        syncCommands = connection.sync();  
    }  
  
    public Long generateUniqueId() {  
        return syncCommands.incr(ID\_KEY);  
    }  
  
    public static void main(String[] args) {  
        RedisClusterClient redisClient = RedisClusterClient.create();  
        RedisDistributedIdGenerator idGenerator = new RedisDistributedIdGenerator(redisClient);  
  
        // 生成ID示例 
        for (int i = 0; i < 10; i++) {  
            Long uniqueId = idGenerator.generateUniqueId();  
            System.out.println("Generated Unique ID: " + uniqueId);  
        }  
  
        // 关闭连接(实际应用中应该在合适的时机关闭,比如应用关闭时) 
        redisClient.shutdown();  
    }  
}

上面的代码是一个简化的示例,用于演示如何使用Lettuce连接到Redis集群并生成ID。在实际应用中,您需要配置所有的Redis集群节点,并处理连接管理、错误处理和资源回收等更复杂的情况。

在真实的生产环境中,您需要添加错误处理逻辑来处理网络中断、Redis节点失效等情况。此外,还需要合理管理Redis连接,比如使用连接池来复用连接,减少创建和销毁连接的开销。

在Lettuce中,连接池是隐式的,由ClientResourcesRedisClient管理。当你从RedisClient获取一个命令接口(如StatefulRedisConnectionRedisCommands)时,Lettuce会自动从池中获取连接。当命令接口不再需要时,你应该关闭它以释放连接回池中。示例代码如下:

import io.lettuce.core.api.StatefulRedisConnection;  
import io.lettuce.core.api.sync.RedisCommands;  
import io.lettuce.core.cluster.api.sync.RedisAdvancedClusterCommands;  
  
// ... 创建和配置redisClient ... 
  
try {  
    // 获取一个Redis连接(对于集群,这实际上是一个到集群的连接) 
    RedisAdvancedClusterCommands<String, String> syncCommands = redisClient.connect().sync();  
      
    // 执行命令... 
    String value = syncCommands.get("mykey");  
    System.out.println("Value for 'mykey': " + value);  
      
    // 当你完成所有操作后,关闭连接以释放资源 
    syncCommands.close();  
} catch (Exception e) {  
    // 处理异常,如连接失败、命令执行错误等 
    e.printStackTrace();  
} finally {  
    // 在应用程序关闭时,关闭RedisClient和ClientResources以释放所有资源 
    redisClient.shutdown();  
    clientResources.shutdown();  
}

在上面的代码中,redisClient.connect().sync()实际上不会立即创建一个新的连接,而是返回一个命令接口,该接口在需要时才会从连接池中获取连接。调用syncCommands.close()会将连接释放回池中,而不是关闭它。真正的连接关闭是在redisClient.shutdown()clientResources.shutdown()调用时发生的。

确保在应用程序的生命周期中适当地管理RedisClientClientResources的创建和关闭,以避免资源泄漏。通常,你会在应用程序启动时创建这些资源,并在应用程序关闭时清理它们。

Redis分布式ID生成器优化方案

  1. 使用Redis集群:为了提高可用性和容错性,应该使用Redis集群而不是单个Redis实例。这样,即使某个节点失效,其他节点仍然可以提供服务。
  2. 设置合适的初始值和步长:根据业务需求设置初始值和步长。通常初始值设置为一个较小的数(如1),步长可以根据需要生成ID的速度和预计的并发量来设置。
  3. 考虑ID的持久化:如果Redis重启或数据丢失,需要有一种机制来恢复ID的生成。这可以通过将ID持久化到数据库或其他存储系统来实现。
  4. 监控和日志记录:实施适当的监控和日志记录策略,以便跟踪ID生成器的性能和任何潜在问题。

zookeeper 分布式id

ZooKeeper可以用来生成全局唯一的、顺序递增的ID,利用zookeeper提供的zxid(ZooKeeper Transaction Id)来生成全局唯一且递增的ID。

ZooKeeper保证全局唯一性的方式主要依赖于其ZNode结构和ZXID(ZooKeeper Transaction Id)。

首先,ZooKeeper的ZNode结构类似于一个文件系统,每个节点都有唯一的路径名。这种结构使得在ZooKeeper集群中,每个ZNode都是唯一的,从而可以用来存储和表示全局唯一的信息。

其次,ZooKeeper使用ZXID来标识每个事务操作。ZXID是一个64位的数字,由epoch(纪元)和count(计数器)两个部分组成。每当ZooKeeper集群中的状态发生变化(如ZNode的创建、更新或删除)时,都会生成一个新的ZXID。由于每个ZXID都是唯一的,并且按照生成的时间顺序递增,因此可以用来保证全局操作的顺序性和唯一性。

需要注意的是,直接使用ZXID作为全局唯一ID有一些限制。因为ZXID是内部使用的,并不直接暴露给客户端。同时,在不同的ZooKeeper集群之间,ZXID可能会重复。因此,如果需要在不同的ZooKeeper集群之间生成全局唯一的ID,需要采用其他方法,如UUID或自定义的全局ID生成算法。

另外,ZooKeeper还提供了顺序节点(Sequential ZNode)的功能。顺序节点在创建时会自动在节点名后附加一个递增的计数器,从而保证了节点名的全局唯一性。这种功能可以用来实现诸如分布式锁、领导选举等需要全局唯一性的场景。

综上所述,ZooKeeper通过其ZNode结构和ZXID的设计,以及顺序节点的功能,提供了全局唯一性的保证。但在具体使用时,需要根据场景和需求选择合适的方法来实现全局唯一性。

尽管如此,我们仍然可以利用ZooKeeper的特性来实现一个分布式ID生成器。下面是一个简单的实现步骤和Java代码示例:

实现步骤

  1. 建立ZooKeeper连接:首先,需要创建一个ZooKeeper客户端,用于与ZooKeeper集群进行通信。
  2. 创建持久节点:在ZooKeeper中创建一个持久节点,作为ID生成的根节点。

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

述,ZooKeeper通过其ZNode结构和ZXID的设计,以及顺序节点的功能,提供了全局唯一性的保证。但在具体使用时,需要根据场景和需求选择合适的方法来实现全局唯一性。

尽管如此,我们仍然可以利用ZooKeeper的特性来实现一个分布式ID生成器。下面是一个简单的实现步骤和Java代码示例:

实现步骤

  1. 建立ZooKeeper连接:首先,需要创建一个ZooKeeper客户端,用于与ZooKeeper集群进行通信。
  2. 创建持久节点:在ZooKeeper中创建一个持久节点,作为ID生成的根节点。

[外链图片转存中…(img-FLKfSwMp-1715024007932)]
[外链图片转存中…(img-rgRDAY6g-1715024007932)]

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值