基于zookeeper实现分布式锁_zk实现分布式锁,大数据开发面试项目

        @Override
        public void process(WatchedEvent watchedEvent) {
            System.out.println("zookeeper 获取链接成功");
        }
    });
    //创建分布式锁根节点
    try {
        if (this.zooKeeper.exists(ROOT_PATH, false) == null) {
            this.zooKeeper.create(ROOT_PATH, null,
                    ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
        }
    } catch (KeeperException e) {
        e.printStackTrace();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
}

@PreDestroy
public void destroy() {
    if (zooKeeper != null) {
        try {
            zooKeeper.close();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}
/**
 * 初始化分布式对象方法
 */
public ZkDistributedLock getZkDistributedLock(String lockname){
    return new ZkDistributedLock(zooKeeper,lockname);
}

}


#### 代码落地



public class ZkDistributedLock {
public static final String ROOT_PATH = “/distribute”;
private String path;
private ZooKeeper zooKeeper;

public ZkDistributedLock(ZooKeeper zooKeeper, String lockname) {
    this.zooKeeper = zooKeeper;
    this.path = ROOT_PATH + "/" + lockname;
}

public void lock() {
    try {
        zooKeeper.create(path, null, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
    } catch (KeeperException e) {
        e.printStackTrace();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    try {
        Thread.sleep(200);
        lock();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }

}

public  void  unlock(){
    try {
        this.zooKeeper.delete(path,0);
    } catch (InterruptedException e) {
        e.printStackTrace();
    } catch (KeeperException e) {
        e.printStackTrace();
    }

}

}


改造StockService的checkAndLock方法:



@Autowired
private zkClient client;

public void checkAndLock() {
    // 加锁,获取锁失败重试
    ZkDistributedLock lock = this.client.getZkDistributedLock("lock");
    lock.lock();
    // 先查询库存是否充足
    Stock stock = this.stockMapper.selectById(1L);
    // 再减库存
    if (stock != null && stock.getCount() > 0) {
        stock.setCount(stock.getCount() - 1);
        this.stockMapper.updateById(stock);
    }
    lock.unlock();
}

Jmeter压力测试:


![](https://img-blog.csdnimg.cn/8aa545c33a5c48468a6181d2f2760799.png) 性能一般,mysql数据库的库存余量为0(注意:所有测试之前都要先修改库存量为5000)


基本实现存在的问题:  
        1. 性能一般(比mysql略好)  
         2. 不可重入  
 接下来首先来提高性能


### 优化:性能优化


基本实现中由于无限自旋影响性能:


![](https://img-blog.csdnimg.cn/336c29e5647b4f8b944346a19b6e093b.png)


试想:每个请求要想正常的执行完成,最终都是要创建节点,如果能够避免争抢必然可以提高性能。这里借助于zk的临时序列化节点,实现分布式锁: 


![](https://img-blog.csdnimg.cn/917c7808d3964faba179c26073730783.png)


####  实现阻塞锁


代码实现:



public class ZkDistributedLock {
public static final String ROOT_PATH = “/distribute”;
private String path;
private ZooKeeper zooKeeper;

public ZkDistributedLock(ZooKeeper zooKeeper, String lockname) {
    this.zooKeeper = zooKeeper;
    try {
        this.path = zooKeeper.create(ROOT_PATH + "/" + lockname + "_",
                null, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT_SEQUENTIAL);
    } catch (KeeperException e) {
        e.printStackTrace();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
}

public void lock() {
    String preNode = getpreNode(path);
    //如果该节点没有前一个节点,说明该节点是最小的节点
    if (StringUtils.isEmpty(preNode)) {
        return;
    }
    //重新检查是否获取到锁
    try {
        Thread.sleep(20);
        lock();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
}

/**
 * 获取指定节点的前节点
 *
 * @param path
 * @return
 */
private String getpreNode(String path) {
    //获取当前节点的序列化序号
    Long curSerial = Long.valueOf(StringUtil.substringAfter(path, '_'));
    //获取根路径下的所有序列化子节点
    try {
        List<String> nodes = this.zooKeeper.getChildren(ROOT_PATH, false);
        //判空处理
        if (CollectionUtils.isEmpty(nodes)) {
            return null;
        }
        //获取前一个节点
        Long flag = 0L;
        String preNode = null;
        for (String node : nodes) {
            //获取每个节点的序列化号
            Long serial = Long.valueOf(StringUtil.substringAfter(path, '_'));
            if (serial < curSerial && serial > flag) {
                flag = serial;
                preNode = node;
            }
        }
        return preNode;
    } catch (KeeperException e) {
        e.printStackTrace();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    return null;
}

public void unlock() {
    try {
        this.zooKeeper.delete(path, 0);
    } catch (InterruptedException e) {
        e.printStackTrace();
    } catch (KeeperException e) {
        e.printStackTrace();
    }

}

}


主要修改了构造方法和lock方法:


![](https://img-blog.csdnimg.cn/09a53e16299e4e8bba80339f58e95215.png)


 并添加了getPreNode获取前置节点的方法。


测试结果如下:


![](https://img-blog.csdnimg.cn/bf90b8602a884e15862dbde4c939adfa.png)


 性能反而更弱了。


原因:虽然不用反复争抢创建节点了,但是会自选判断自己是最小的节点,这个判断逻辑反而更复杂更 耗时。


解决方案:监听实现阻塞锁


#### 监听实现阻塞锁


对于这个算法有个极大的优化点:假如当前有1000个节点在等待锁,如果获得锁的客户端释放锁时,这1000个客户端都会被唤醒,这种情况称为“羊群效应”;在这种羊群效应中,zookeeper需要通知1000个 客户端,这会阻塞其他的操作,最好的情况应该只唤醒新的最小节点对应的客户端。应该怎么做呢?在 设置事件监听时,每个客户端应该对刚好在它之前的子节点设置事件监听,例如子节点列表 为/lock/lock-0000000000、/lock/lock-0000000001、/lock/lock-0000000002,序号为1的客户端监听 序号为0的子节点删除消息,序号为2的监听序号为1的子节点删除消息。


所以调整后的分布式锁算法流程如下:


* 客户端连接zookeeper,并在/lock下创建临时的且有序的子节点,第一个客户端对应的子节点 为/lock/lock-0000000000,第二个为/lock/lock-0000000001,以此类推;
* 客户端获取/lock下的子节点列表,判断自己创建的子节点是否为当前子节点列表中序号最小的子 节点,如果是则认为获得锁,否则监听刚好在自己之前一位的子节点删除消息,获得子节点变更通 知后重复此步骤直至获得锁;
* 执行业务代码;
* 完成业务流程后,删除对应的子节点释放锁。


改造ZkDistributedLock的lock方法:



public void lock() {
    String preNode = getpreNode(path);
    //如果该节点没有前一个节点,说明该节点是最小的节点
    if (StringUtils.isEmpty(preNode)) {
        return;
    } else {
        CountDownLatch countDownLatch = new CountDownLatch(1);
        try {
            if (this.zooKeeper.exists(ROOT_PATH + "/" + preNode, watchedEvent -> {
                countDownLatch.countDown();
            }) == null) {
                return;
            }
            countDownLatch.await();
            return;

        } catch (KeeperException e) {
            e.printStackTrace();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        try {
            Thread.sleep(200);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        lock();
    }
}

压力测试效果如下:


![](https://img-blog.csdnimg.cn/4447f4f71bab4224a2d71fa4123a2c6a.png)


 由此可见性能提高不少仅次于redis的分布式锁


### 优化:可重入锁


引入ThreadLocal线程局部变量保证zk分布式锁的可重入性。


在对应的线程的存储数据



public class ZkDistributedLock {
public static final String ROOT_PATH = “/distribute”;
private String path;
private ZooKeeper zooKeeper;
private static final ThreadLocal THREAD_LOCAL = new ThreadLocal<>();

public ZkDistributedLock(ZooKeeper zooKeeper, String lockname) {
    this.zooKeeper = zooKeeper;
    try {
        this.path = zooKeeper.create(ROOT_PATH + "/" + lockname + "_",
                null, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT_SEQUENTIAL);
    } catch (KeeperException e) {
        e.printStackTrace();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
}

public void lock() {
    Integer flag = THREAD_LOCAL.get();
    if (flag != null && flag > 0) {
        THREAD_LOCAL.set(flag + 1);
        return;
    }
    String preNode = getpreNode(path);
    //如果该节点没有前一个节点,说明该节点是最小的节点
    if (StringUtils.isEmpty(preNode)) {
        return;
    } else {
        CountDownLatch countDownLatch = new CountDownLatch(1);
        try {
            if (this.zooKeeper.exists(ROOT_PATH + "/" + preNode, watchedEvent -> {
                countDownLatch.countDown();
            }) == null) {
                return;
            }
            countDownLatch.await();
            THREAD_LOCAL.set(1);
            return;

        } catch (KeeperException e) {
            e.printStackTrace();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        try {
            Thread.sleep(200);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        lock();
    }
}

/**
 * 获取指定节点的前节点
 *
 * @param path
 * @return
 */
private String getpreNode(String path) {
    //获取当前节点的序列化序号
    Long curSerial = Long.valueOf(StringUtil.substringAfter(path, '_'));
    //获取根路径下的所有序列化子节点
    try {
        List<String> nodes = this.zooKeeper.getChildren(ROOT_PATH, false);
        //判空处理
        if (CollectionUtils.isEmpty(nodes)) {
            return null;
        }
        //获取前一个节点
        Long flag = 0L;
        String preNode = null;
        for (String node : nodes) {
            //获取每个节点的序列化号
            Long serial = Long.valueOf(StringUtil.substringAfter(path, '_'));
            if (serial < curSerial && serial > flag) {
                flag = serial;
                preNode = node;
            }
        }
        return preNode;
    } catch (KeeperException e) {
        e.printStackTrace();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    return null;
}

public void unlock() {
    try {
        THREAD_LOCAL.set(THREAD_LOCAL.get() - 1);
        if (THREAD_LOCAL.get() == 0) {

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
img

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

)]
[外链图片转存中…(img-FHjO2u0v-1713018349334)]
[外链图片转存中…(img-kyfXt2Q9-1713018349334)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
[外链图片转存中…(img-dJInYtUg-1713018349334)]

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值