1.调度平台:
谷歌的kubeflow
Databricks的Mlflow
Airflow
2.bdp可以定时也可以接口调用
3.多个模型并行训练可以采用接口传参获取特定数据训练特定模型,然后允许任务并行即可等价于k8s或者容器内搭建调度平台然后通过节点调用bdp接囗,因为bdp本身就是调度平台
4.训练与预测最大区别:训练存储模型文件不一定给预测结果,如果有预测结果是离线存在hive表预测是使用已知模型文件返回预测结果,可以存储hive表单更多是实时返回预测结果
5.预测分为离线数据预测和实时数据预测:离线数据预测可以离线预测结果提前存hive表离线数据预测可以提前转成hbase实现实时返回预测结果实时数据即为用真实的实时数据流进行预测
重点要实现实时数据和实时计算
# -*- coding:utf-8 -*-
from kafka import KafkaProducer, KafkaConsumer
from kafka. errors import kafka_errors
import traceback
import json
import time
def consumer_demo1()
consumer • = KafkaConsumer
**自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。**
**深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!**
**因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。**





**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!**
**由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**
**如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)**

**一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**