大数据最新MongoDB中如何优雅地删除大量数据(1),不看绝对血亏

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!


实例思路同remove类似,只不过会将待删除的_id放到一个数组中,最后再通过deleteMany一次性删除。

具体代码如下:

var delete_date = new Date(“2021-01-01T00:00:00.000Z”);

var start_time = new Date();

rows = db.test_collection.find({“createtime”: {$lt: delete_date}}).count()

print(“total rows:”, rows);

var batch_num = 5000;

while (rows > 0) {

if (rows < batch_num) {

batch_num = rows;

}

var cursor = db.test_collection.find({“createtime”: {$lt: delete_date}}, {“_id”: 1}).sort({“_id”: 1}).limit(batch_num);

rows = rows - batch_num;

var delete_ids = [];

// 将满足条件的主键值放入到数组中。

cursor.forEach(function (each_row) {

delete_ids.push(each_row[“_id”]);

});

// 通过deleteMany一次删除5000条记录。

db.test_collection.deleteMany({

‘_id’: {“$in”: delete_ids},

“createTime”: {‘$lt’: delete_date}

},{w: “majority”})

}

var end_time = new Date();

print((end_time - start_time) / 1000);

3. bulkWrite


实现思路同deleteMany类似,也是将待删除的_id放到一个数组中,最后再调用bulkWrite进行删除。

具体代码如下:

var delete_date = new Date(“2021-01-01T00:00:00.000Z”);

var start_time = new Date();

rows = db.test_collection.find({“createtime”: {$lt: delete_date}}).count()

print(“total rows:”, rows);

var batch_num = 5000;

while (rows > 0) {

if (rows < batch_num) {

batch_num = rows;

}

var cursor = db.test_collection.find({“createtime”: {$lt: delete_date}}, {“_id”: 1}).sort({“_id”: 1}).limit(batch_num);

rows = rows - batch_num;

var delete_ids = [];

cursor.forEach(function (each_row) {

delete_ids.push(each_row[“_id”]);

});

db.test_collection.bulkWrite(

[

{

deleteMany: {

“filter”: {

‘_id’: {“$in”: delete_ids},

“createTime”: {‘$lt’: delete_date}

}

}

}

],

{ordered: false},

{writeConcern: {w: “majority”, wtimeout: 100}}

)

}

var end_time = new Date();

print((end_time - start_time) / 1000);

接下来,看看三者的执行效率。

| 删除方式 | 平均执行时间(s) | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |

| — | — | — | — | — | — | — |

| remove | 47.341 | 49.606 | 48.487 | 49.314 | 47.572 | 41.727 |

| deleteMany | 16.951 | 16.566 | 18.669 | 17.932 | 18.66 | 12.928 |

| bulkWrite | 16.476 | 17.247 | 14.181 | 16.151 | 18.403 | 16.397 |

结合表中的数据,可以看出,

  1. 执行最慢的是remove,执行最快的是bulkWrite,前者差不多是后者的 2.79 倍。

  2. deleteMany 和 bulkWrite 的执行效率差不多,但就语法而言,前者比后者简洁。

所以线上如果要删除大量数据,推荐使用 deleteMany + ObjectID 进行批量删除。

通过 Write Concern 规避主从延迟

=======================

虽然是批量删除,但在MySQL中,如果没控制好节奏,还是很容易导致主从延迟。在MongoDB中,其实也有类似的担忧,不过我们可以通过 Write Concern 进行规避。

Write Concern,可理解为写安全策略,简单来说,它定义了一个写操作,需要在几个节点上应用(Apply)完,才会给客户端反馈。

看下面这个原理图。

图中是一个一主两从的副本集,设置了w: “majority”,代表一个写操作,需要等待副本集中绝大多数节点(本例中是两个)应用完,才能给客户端反馈。

在前面的代码中,无论是remove,deleteMany还是bulkWrite方法,都设置了w: “majority”。

之所以这样设置,一方面是为了保证数据的安全性,毕竟删除操作能在多个节点落盘,另一方面,还能有效降低批量操作可能导致的主从延迟风险。

Write Concern的完整语法如下,

{ w: , j: , wtimeout:  }

其中,

w:指定节点数或tags。其有如下取值:

  • :显式指定节点数量。

设置为0,无需Server端反馈。

设置为1,只需Primary节点反馈。

设置为2,在副本集中,需要一个Primary节点(Primary节点必需)和一个Secondary节点反馈。

需要注意的是,这里的Secondary节点必须是数据节点,可以是隐藏节点、延迟节点或Priority为 0 的节点,但仲裁节点(Arbiter)绝对不行。

一般来说,设置的节点数越多,数据越安全,写入的效率也会越低。

  • majority:副本集大多数节点。

与上面不一样的是,这里的Secondary节点不仅要求是数据节点,它的votes(members[n].votes)还必须大于0。

  • :指定tags。

tag,顾名思义,是给节点打标签。常用于多数据中心部署场景。

如一个集群,有5个节点,跨机房部署。其中3个节点在A机房,另外2个节点在B机房,因为对数据的安全性、一致性要求很高,我们希望写操作至少能在A机房的2个节点落盘,B机房的1个节点落盘。

对于这种个性化的需求,只有通过tags才能实现。

具体使用,可参考:Configure Replica Set Tag Sets — MongoDB Manual

j:是否需要等待对应操作的日志持久化到磁盘中。

在MongoDB中,一个写操作会涉及到三个动作:更新数据,更新索引,写入oplog,这三个动作要么全部成功,要么全部失败,这也是MongoDB单行事务的由来。

对于每个写操作,WiredTiger都会记录一条日志到 journal 中。

日志在写入journal之前,会首先写入到 journal buffer(最大128KB)中。

Journal buffer会在以下场景持久化到 journal 文件中:

  • 副本集中,当有操作等待oplog时。

这类操作包括:针对oplog最新位置点的扫描查询;Causally consistent session中的读操作;对于Secondary节点,每次批量应用oplog后。

  • Write Concern 设置了 j: true。

  • 每100ms。

由 storage.journal.commitIntervalMs 参数指定。

  • 创建新的 journal 文件时。

当 journal 文件的大小达到100MB时会自动创建一个新的journal 文件。

wtimeout:超时时长,单位ms。

不设置或设置为0,命令在执行的过程中,如果遇到了锁等待或节点数不满足要求,会一直阻塞。

如果设置了时间,命令在这个时间内没有执行成功,则会超时报错,具体报错信息如下:

rs:PRIMARY> db.test.insert({“a”: 1}, {writeConcern: {w: “majority”, wtimeout: 100}})

WriteResult({

“nInserted”: 1,

“writeConcernError”: {

“code”: 64,

“codeName”: “WriteConcernFailed”,

“errInfo”: {

“wtimeout”: true

},

“errmsg”: “waiting for replication timed out”

}

})

删除过程中遇到的Bug

===========

其实,最开始的删除程序是下面这个版本。

var delete_date = new Date(“2021-01-01T00:00:00.000Z”);

var start_time = new Date();

var batch_num = 5000;

while (1 == 1) {

var cursor = db.test_collection.find({“createtime”: {$lt: delete_date}}, {“_id”: 1}).sort({“_id”: 1}).limit(batch_num);

delete_ids = []

cursor.forEach(function (each_row) {

delete_ids.push(each_row[“_id”])

});

if (delete_ids.length == 0) {

break;

}

db.test_collection.deleteMany({

‘_id’: {“$in”: delete_ids},

“createtime”: {‘$lt’: delete_date}

}, {w: “majority”})

}

var end_time = new Date();

print((end_time - start_time) / 1000);

相对于效率对比章节的版本,这个版本的代码简洁不少。

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

nd_time = new Date();

print((end_time - start_time) / 1000);

相对于效率对比章节的版本,这个版本的代码简洁不少。

[外链图片转存中…(img-rk6Z0sgo-1715439501213)]
[外链图片转存中…(img-7a7M0gz0-1715439501214)]
[外链图片转存中…(img-RLVLN0Ae-1715439501214)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值