SVM 支持向量机算法(Support Vector Machine )【Python机器学习系列(十四)(2)

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

其中,

λ

\lambda

λ是拉格朗日乘子,这里的m是样本的个数,每个样本对应一个拉格朗日算子,共计m个拉格朗日算子,对应m个限制条件。

F

(

ω

,

b

,

λ

)

对F(\omega,b,\lambda)

对F(ω,b,λ)求关于

ω

\omega

ω 和

b

b

b的偏导,并令其为0,再求解:

L

(

ω

,

b

,

λ

)

ω

=

ω

i

=

1

m

λ

i

y

i

x

i

=

0

\frac{∂L(\omega,b,\lambda)}{∂\omega}=\omega-\sum_{i=1}^{m}\lambda_iy_ix_i=0

∂ω∂L(ω,b,λ)​=ω−∑i=1m​λi​yi​xi​=0

L

(

ω

,

b

,

λ

)

b

=

i

=

1

m

λ

i

y

i

=

0

\frac{∂L(\omega,b,\lambda)}{∂b}=-\sum_{i=1}^{m}\lambda_iy_i=0

∂b∂L(ω,b,λ)​=−∑i=1m​λi​yi​=0

解得

ω

=

i

=

1

m

λ

i

y

i

x

i

\omega=\sum_{i=1}^{m}\lambda_iy_ix_i

ω=∑i=1m​λi​yi​xi​

0

=

i

=

1

m

λ

i

y

i

0=\sum_{i=1}^{m}\lambda_iy_i

0=∑i=1m​λi​yi​

将求解结果带回原

L

(

ω

,

b

,

λ

)

L(\omega,b,\lambda)

L(ω,b,λ),并进一步化简得:

L

(

ω

,

b

,

λ

)

=

1

2

ω

T

ω

i

=

1

m

λ

i

ω

T

i

=

1

m

λ

i

y

i

x

i

b

i

=

1

m

λ

i

y

i

L(\omega,b,\lambda)=\frac{1}{2}\omega^T \omega+\sum_{i=1}^{m}\lambda_i -\omegaT\sum_{i=1}{m}\lambda_iy_ix_i-b\sum_{i=1}^{m}\lambda_iy_i

L(ω,b,λ)=21​ωTω+∑i=1m​λi​−ωT∑i=1m​λi​yi​xi​−b∑i=1m​λi​yi​

=

i

=

1

m

λ

i

1

2

ω

T

ω

=\sum_{i=1}{m}\lambda_i-\frac{1}{2}\omegaT\omega

=∑i=1m​λi​−21​ωTω

=

i

=

1

m

λ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值