网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
其中,
λ
\lambda
λ是拉格朗日乘子,这里的m是样本的个数,每个样本对应一个拉格朗日算子,共计m个拉格朗日算子,对应m个限制条件。
对
F
(
ω
,
b
,
λ
)
对F(\omega,b,\lambda)
对F(ω,b,λ)求关于
ω
\omega
ω 和
b
b
b的偏导,并令其为0,再求解:
∂
L
(
ω
,
b
,
λ
)
∂
ω
=
ω
−
∑
i
=
1
m
λ
i
y
i
x
i
=
0
\frac{∂L(\omega,b,\lambda)}{∂\omega}=\omega-\sum_{i=1}^{m}\lambda_iy_ix_i=0
∂ω∂L(ω,b,λ)=ω−∑i=1mλiyixi=0
∂
L
(
ω
,
b
,
λ
)
∂
b
=
−
∑
i
=
1
m
λ
i
y
i
=
0
\frac{∂L(\omega,b,\lambda)}{∂b}=-\sum_{i=1}^{m}\lambda_iy_i=0
∂b∂L(ω,b,λ)=−∑i=1mλiyi=0
解得
ω
=
∑
i
=
1
m
λ
i
y
i
x
i
\omega=\sum_{i=1}^{m}\lambda_iy_ix_i
ω=∑i=1mλiyixi
0
=
∑
i
=
1
m
λ
i
y
i
0=\sum_{i=1}^{m}\lambda_iy_i
0=∑i=1mλiyi
将求解结果带回原
L
(
ω
,
b
,
λ
)
L(\omega,b,\lambda)
L(ω,b,λ),并进一步化简得:
L
(
ω
,
b
,
λ
)
=
1
2
ω
T
ω
∑
i
=
1
m
λ
i
−
ω
T
∑
i
=
1
m
λ
i
y
i
x
i
−
b
∑
i
=
1
m
λ
i
y
i
L(\omega,b,\lambda)=\frac{1}{2}\omega^T \omega+\sum_{i=1}^{m}\lambda_i -\omegaT\sum_{i=1}{m}\lambda_iy_ix_i-b\sum_{i=1}^{m}\lambda_iy_i
L(ω,b,λ)=21ωTω+∑i=1mλi−ωT∑i=1mλiyixi−b∑i=1mλiyi
=
∑
i
=
1
m
λ
i
−
1
2
ω
T
ω
=\sum_{i=1}{m}\lambda_i-\frac{1}{2}\omegaT\omega
=∑i=1mλi−21ωTω
=
∑
i
=
1
m
λ