最新【深度学习】:《PyTorch入门到项目实战》卷积神经网络2-3(2),2024年最新binder机制原理面试

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

c1​×f×f×c0​的卷积核进行处理,得到一个

(

n

f

1

×

c

1

)

×

(

n

f

1

×

c

1

)

(n-f+1\times c_1)\times (n-f+1 \times c_1)

(n−f+1×c1​)×(n−f+1×c1​)的输出。

3.代码实现

3.1 多通道输入实现

# 导入相关库
import torch
from d2l import torch as d2l

def corr2d\_multi\_in(X, K):
    # 先遍历“X”和“K”的第0个维度(通道维度),再把它们加在一起。
    return sum(d2l.corr2d(x, k) for x, k in zip(X, K))

我们测试一下结果

X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],               [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])
X.shape,K.shape

(torch.Size([2, 3, 3]), torch.Size([2, 2, 2]))

可以看出,输入是一个2通道

3

×

3

3\times3

3×3的数据,卷积核是

2

×

2

×

2

2\times2\times2

2×2×2,得到的结果为

2

×

2

2\times2

2×2。

corr2d_multi_in(X, K)

tensor([[ 56.,  72.],
        [104., 120.]])

3.2 多通道输出实现

定义多通道输出函数

def corr2d\_multi\_in\_out(X, K):
    # 迭代“K”的第0个维度,每次都对输入“X”执行互相关运算。
    # 最后将所有结果都叠加在一起,注意,这里我们只对K进行遍历
    return torch.stack([corr2d_multi_in(X, k) for k in K], 0)

使用stack将卷积核堆叠

K = torch.stack((K, K + 1, K + 2), 0)
K.shape

torch.Size([3, 2, 2, 2])

可以看出这是一个3个输出通道,2个输入通道的2×2卷积核,因此得到的结果为

3

×

2

×

2

3\times2\times2

3×2×2。

corr2d_multi_in_out(X, K)

tensor([[[ 56.,  72.],
         [104., 120.]],

        [[ 76., 100.],
         [148., 172.]],

        [[ 96., 128.],
         [192., 224.]]])

🔎本章的介绍到此介绍,如果文章对你有帮助,请多多点赞、收藏、评论、订阅支持!!【深度学习】:《PyTorch入门到项目实战》

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

3Gh-1715502024419)]
[外链图片转存中…(img-EXvAs0zk-1715502024420)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值