既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
* 通过哈希源和目标顶点 ID,得到随机的顶点切割,适合将同向边放在一起。
* 当希望随机将边分配到不同分区,并将同一方向的边放在一起时,可以考虑该策略。
-
CanonicalRandomVertexCut:
- 通过哈希源和目标顶点 ID,并以规范方向进行分区,适合将所有边放在一起,无论方向如何。
- 当希望将所有边都考虑在内,并无关乎边的方向时,可以选择该策略。
选择合适的分区策略取决于具体的图结构、计算需求和性能要求。在实际应用中,可以根据图的大小、稀疏程度、计算负载以及希望达到的顶点复制限制等因素综合考虑,选择最适合的策略。
优势、场景
在使用时,可以根据具体的需求和场景,通过调整参数和测试不同的策略,来评估和选择最优的分区策略,以获得最佳的图计算性能。
详细区别如下:
EdgePartition2D
对于EdgePartition2D
策略,适用于大规模图,并且能够保证在顶点复制上有 2 * sqrt(numParts)
的上限。
-
适用场景:
- 适用于大规模图数据,即顶点和边数量较大的图结构。
- 该策略能够有效地控制顶点的复制数量,限制在一个相对较小的范围内,有利于提高计算效率和减少资源消耗。
-
优势:
- 通过二维稀疏边邻接矩阵的分区方式,可以有效地控制顶点的复制数量。
- 保证顶点复制数量不会超过
2 * sqrt(numParts)
的上限,避免了过多的顶点复制,有助于降低计算和通信开销。
-
考虑因素:
- 当处理大规模图数据时,需要限制顶点复制数量以保持计算性能时,可以考虑使用该策略。
- 在需要较好的顶点复制限制的情况下,可以选择
EdgePartition2D
策略来优化图计算过程。
总的来说,对于大规模图并且需要限制顶点复制数量的情况下,EdgePartition2D
策略是一个值得考虑的选择,可以提高计算效率和优化资源利用。
EdgePartition1D
对于 EdgePartition1D
策略,适用于根据源顶点进行边的分区,能够将具有相同源顶点的边放在一起。
-
适用场景:
- 适用于希望将同一源顶点的边放在同一分区的情况。
- 当需要保持具有相同源顶点的边在同一分区,以便在计算过程中处理这些边时更加高效时,可以选择该策略。
-
优势:
- 根据源顶点 ID 将边分配到分区,保证了具有相同源顶点的边被放在同一分区,有利于优化数据访问和计算效率。
- 通过将同一源顶点的边放在一起,可以减少跨分区的通信和数据传输,提高计算性能。
-
考虑因素:
- 当希望在图计算过程中将具有相同源顶点的边放在同一分区,以提高计算效率和减少通信开销时,可以选择
EdgePartition1D
策略。 - 适用于需要根据源顶点进行数据处理和计算的场景,有助于简化计算逻辑并提高执行效率。
- 当希望在图计算过程中将具有相同源顶点的边放在同一分区,以提高计算效率和减少通信开销时,可以选择
综上所述,选择 EdgePartition1D
策略适用于需要根据源顶点将边分配到分区,并希望将具有相同源顶点的边放在一起的情况。这样可以提高数据访问的效率和计算的性能。
RandomVertexCut
对于 RandomVertexCut
策略,它通过哈希源和目标顶点 ID,得到随机的顶点切割,适合将同向边放在一起。
-
适用场景:
- 适用于希望将同一方向的边放在一起的场景。
- 当希望随机将边分配到不同分区,并且希望将同一方向的边聚集在一起以优化计算时,可以选择该策略。
-
优势:
- 通过哈希源和目标顶点 ID,实现随机的顶点切割,有利于将同向边放在一起,减少跨分区通信和数据传输。
- 适用于需要将同一方向的边聚集在一起进行计算的场景,有助于提高计算效率和优化数据访问。
-
考虑因素:
- 当需要随机将边分配到不同分区,并希望将同一方向的边聚集在一起以优化计算时,可以选择
RandomVertexCut
策略。 - 适用于需要随机性和随机分布的场景,同时希望同向边在同一分区进行处理的情况。
- 当需要随机将边分配到不同分区,并希望将同一方向的边聚集在一起以优化计算时,可以选择
总的来说,选择 RandomVertexCut
策略适用于希望将同一方向的边放在一起,并且希期随机分布边数据的场景。这样可以优化数据访问和计算效率,同时充分利用分布式计算环境的优势。
CanonicalRandomVertexCut
对于 CanonicalRandomVertexCut
策略,它通过哈希源和目标顶点 ID,并以规范方向进行分区,适合将所有边放在一起,无论方向如何。
-
适用场景:
- 适用于希望将所有边放在一起,无论边的方向如何的情况。
- 当希望将所有边都考虑在内,而不关心边的方向时,可以选择
CanonicalRandomVertexCut
策略。
-
优势:
- 通过哈希源和目标顶点 ID,并以规范方向进行分区,将所有边放在一起,简化了计算过程,无需考虑边的方向。
- 适用于需要考虑整体图结构的情况&#
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
/bbs.csdn.net/topics/618545628)**
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!