2024年最新Flink入门之 DataSet API实现Word Count(1),2024年最新大数据开发面试总结

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

<properties>
    <maven.compiler.source>8</maven.compiler.source>
    <maven.compiler.target>8</maven.compiler.target>
    <flink.version>1.17.0</flink.version>
</properties>

<dependencies>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-streaming-java</artifactId>
        <version>${flink.version}</version>
    </dependency>

    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-clients</artifactId>
        <version>${flink.version}</version>
    </dependency>
</dependencies>

##### 任务编写



package com.xx.flink.task;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.AggregateOperator;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.FlatMapOperator;
import org.apache.flink.api.java.operators.UnsortedGrouping;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;

/**

  • TODO DataSet API 实现 wordcount(不推荐)
    */
    public class WordCountBatchDemo {
    public static void main(String[] args) throws Exception {
    // TODO 1. 创建执行环境
    ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

     // TODO 2.读取数据:从文件中读取
     DataSource<String> lineDS = env.readTextFile("E:\\code-opensource\\simple-demo\\flink\\input\\word.txt");
    
     // TODO 3.切分、转换 (word,1)
     FlatMapOperator<String, Tuple2<String, Integer>> wordAndOne = lineDS.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
         @Override
         public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
             // TODO 3.1 按照 空格 切分单词
             String[] words = value.split(" ");
             // TODO 3.2 将 单词 转换为 (word,1)
             for (String word : words) {
                 Tuple2<String, Integer> wordTuple2 = Tuple2.of(word, 1);
                 //TODO 3.3 使用 Collector 向下游发送数据
                 out.collect(wordTuple2);
             }
         }
     });
    
     // TODO 4.按照 word 分组
     UnsortedGrouping<Tuple2<String, Integer>> wordAndOneGroupby = wordAndOne.groupBy(0);
    
     // TODO 5.各分组内聚合
     AggregateOperator<Tuple2<String, Integer>> sum = wordAndOneGroupby.sum(1); // 1是位置,表示第二个元素
    
     // TODO 6.输出
    

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

**

需要这份系统化资料的朋友,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值