网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
探讨:
这道题呢是牛客网的面试高频榜单题**NC110 旋转数组,**中等级别,关联的企业和关联职位都要这道题,大家可以拿着这道题好好刷。
分析一下这道题的出现概率是非常大的居然考察数高达87次,这是多么庞大的数字啊,难度也是中等一般,(看下图)通过率也是偏低的;我们知道了为什么我拿这道题讲解的原因了吧!所以很有必要看看
题目主要信息:
- 一个长度为nnn的数组,将数组整体循环右移mmm个位置(mmm可能大于nnn)
- 循环右移即最后mmm个元素放在数组最前面,前n−mn-mn−m个元素依次后移
- 不能使用额外的数组空间
算法思想一:使用额外数组
解题思路:
可以使用额外的数组来将每个元素放至正确的位置。遍历原数组,将原数组下标为 i 的元素放至新数组下标为 (i+m) mod n (为了防止右移的长度大于数组的长度,所以才有取余)的位置,最后返回新数组即可
图解:
代码展示:
JAVA版本
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | import java.util.*; public class Solution { /** * 旋转数组 * @param n int整型 数组长度 * @param m int整型 右移距离 * @param a int整型一维数组 给定数组 * @return int整型一维数组 */ public int``[] solve (``int n,``int m,``int``[] a) { // write code here // 额外新数组 int``[] newArr =``new int``[n]; // 遍历原数组 for (``int i =``0``; i < n; ++i) { // 数组元素旋转 newArr[(i + m) % n] = a[i]; } return newArr; } } |
复杂度分析
时间复杂度 O(n):其中 n 为数组的长度,遍历数组时间O(n)
空间复杂度O(n): 额外新数组占用空间
算法思想二:数组翻转
解题思路:
该方法基于如下的事实:将数组的元素向右移动 k 次后,尾部 m mod n 个元素会移动至数组头部,其余元素向后移动 m mod n 个位置。
该方法为数组的翻转:翻转算法参考 反转链表中的双指针方法 题解 | #反转链表#_牛客博客
1、可以先将所有元素翻转,这样尾部的 m mod n 个元素就被移至数组头部,
2、然后再翻转 [0,m mod n−1] 区间的元素
3、 最后翻转[m mod n,n−1] 区间的元素即能得到最后的答案。
实例:
以 n=7,m=3 为例进行如下展示:
操作 | 结果 |
原始数据 | 【1,2,3,4,5,6,7】 |
翻转所有元素 | 【7,6,5,4,3,2,1】 |
翻转 [0,m mod n −1] 区间的元素 | 【5,6,7,4,3,2,1】 |
翻转 [m mod n, n −1] 区间的元素 | 【5,6,7,1,2,3,4】 |
最后返回:【5,6,7,1,2,3,4】
代码展示:
Python版本
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | class Solution: def solve(``self , n , m , a ): # write code here m``= m``% n # 数组反转 # 翻转全部 self``.reverse(a,``0``, n``- 1``); # 再翻转 【0,m-1】 self``.reverse(a,``0``, m``- 1``); # 再翻转 【m,n-1】 self``.reverse(a, m, n``- 1``); return a def reverse(``self``, nums, start, end): # 数组翻转 while start < end : # 双指针遍历翻转 temp``= nums[start]; nums[start]``= nums[end]; nums[end]``= temp; start``+``= 1``; end``-``= 1``; |
复杂度分析
时间复杂度:O(N),其中 N 为数组的长度。每个元素被翻转两次,一共 N 个元素,因此总时间复杂度为 O(2N)=O(N)。
空间复杂度:O(1)。使用常数级空间变量
算法思想三:数组变换
解题思路:
简单便利的方法:数组直接变换
1、tmp = m mod n,找到右移的距离
2、采用 a[:tmp], a[tmp:] = a[-tmp:],a[:n-tmp] 直接变换
代码展示:
Python版本
1 2 3 4 5 6 7 8 | class Solution: def solve(``self , n , m , a ): # write code here # 获取移动的距离 tmp``= m``% n # 交换移动数组 a[:tmp], a[tmp:]``= a[``-``tmp:],a[:n``-``tmp] return a |
复杂度分析
时间复杂度:O(n),其中 n 为数组的长度。一共移动n个元素
空间复杂度:O(1)。使用常数级空间变量
举一反三:
学习完本题的思路你可以解决如下题目:
方法:三次翻转(推荐使用)
思路:
循环右移相当于从第mmm个位置开始,左右两部分视作整体翻转。即abcdefg右移3位efgabcd可以看成AB翻转成BA(这里小写字母看成数组元素,大写字母看成整体)。既然是翻转我们就可以用到reverse函数。
具体做法:
- step 1:因为mmm可能大于nnn,因此需要对nnn取余,因为每次长度为nnn的旋转数组相当于没有变化。
- step 2:第一次将整个数组翻转,得到数组的逆序,它已经满足了右移的整体出现在了左边。
- step 3:第二次就将左边的mmm个元素单独翻转,因为它虽然移到了左边,但是逆序了。
- step 4:第三次就将右边的n−mn-mn−m个元素单独翻转,因此这部分也逆序了。
图示:
Java代码实现:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | public class Solution { public int``[] solve (``int n,``int m,``int``[] a) { //取余,因为每次长度为n的旋转数组相当于没有变化 m = m % n; //第一次逆转全部数组元素 reverse(a,``0``, n -``1``); //第二次只逆转开头m个 reverse(a,``0``, m -``1``); //第三次只逆转结尾m个 reverse(a, m, n -``1``); return a; } //反转函数 public void reverse(``int``[] nums,``int start,``int end){ while``(start < end){ swap(nums, start++, end--); } } //交换函数 public void swap(``int``[] nums,``int a,``int b){ int temp = nums[a]; nums[a] = nums[b]; nums[b] = temp; } } |
C++代码实现:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | class Solution { public``: vector<``int``> solve(``int n,``int m, vector<``int``>& a) { //取余,因为每次长度为n的旋转数组相当于没有变化 m = m % n; //第一次逆转全部数组元素 reverse(a.begin(), a.end()); //第二次只逆转开头m个 reverse(a.begin(), a.begin() + m); //第三次只逆转结尾m个 reverse(a.begin() + m, a.end()); return a; } }; |
Python实现代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | class Solution: def solve(self , n:``int``, m:``int``, a: List[``int``]) -> List[``int``]: #取余,因为每次长度为n的旋转数组相当于没有变化 m = m % n #第一次逆转全部数组元素 a.reverse() b = a[:m] #第二次只逆转开头m个 b.reverse() c = a[m:] #第三次只逆转结尾m个 c.reverse() a[:m] = b a[m:] = c return a |
复杂度分析:
- 时间复杂度:O(n)O(n)O(n),三次reverse函数的复杂度都最坏为O(n)O(n)O(n)
- 空间复杂度:O(1)O(1)O(1),没有使用额外的辅助空间
接下来再来一道
2.NC78 反转链表
描述:
给定一个单链表的头结点pHead(该头节点是有值的,比如在下图,它的val是1),长度为n,反转该链表后,返回新链表的表头。
数据范围: 0\leq n\leq10000≤n≤1000
要求:空间复杂度 O(1)O(1) ,时间复杂度 O(n)O(n) 。
如当输入链表**{1,2,3}**时,
经反转后,原链表变为**{3,2,1},所以对应的输出为{3,2,1}**。
以上转换过程如下图所示:
我们看输出样式
/**
* struct ListNode {
* int val;
* struct ListNode *next;
* };
*
* C语言声明定义全局变量请加上static,防止重复定义
*
* C语言声明定义全局变量请加上static,防止重复定义
*/
/**
*
* @param pHead ListNode类
* @return ListNode类
*/
struct ListNode* ReverseList(struct ListNode* pHead ) {
// write code here
}
相关企业职位有百度快手,大企 …
解法一:迭代
- 在遍历链表时,将当前节点的next 指针改为指向前一个节点。由于节点没有引用其前一个节点,因此必须事先存储其前一个节点。在更改引用之前,还需要存储后一个节点。最后返回新的头引用。
图解:
Java参考代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | /* public class ListNode { int val; ListNode next = null; ListNode(int val) { this.val = val; } }*/ public class Solution { public ListNode ReverseList(ListNode head) { //pre指针:用来指向反转后的节点,初始化为null ListNode pre =``null``; //当前节点指针 ListNode cur = head; //循环迭代 while``(cur!=``null``){ //Cur_next 节点,永远指向当前节点cur的下一个节点 ListNode Cur_next = cur.next; //反转的关键:当前的节点指向其前一个节点(注意这不是双向链表,没有前驱指针) cur.next = pre; //更新pre pre = cur; //更新当前节点指针 cur = Cur_next ; } //为什么返回pre?因为pre是反转之后的头节点 return pre; } } |
复杂度分析:
时间复杂度:O(N),其中 N 是链表的长度。需要遍历链表一次。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
,其中 N 是链表的长度。需要遍历链表一次。
[外链图片转存中…(img-ZTDuQmHF-1715664094944)]
[外链图片转存中…(img-35ABKdBY-1715664094944)]
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!