看了Python在金融行业中的应用,大数据分析实在太重要了_pythpn分析大数据在金融行业的应用

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

img

什么是金融科技?

简单介绍一下,金融科技(Fintech)是指通过利用各类科技手段创新传统金融行业所提供的产品和服务,提升效率并有效降低运营成本。

根据金融稳定理事会(FSB)的定义,金融科技主要是指由大数据、区块链、云计算、人工智能等新兴前沿技术带动,对金融市场以及金融服务业务供给产生重大影响的新兴业务模式、新技术应用、新产品服务等。

随着大数据时代的到来,人工智能等前沿的科技在算法深刻改变了金融业态,并成为未来金融发展的制高点。金融科技正在传统金融行业的各个领域积极布局,已然成为新的风口。

随着人工智能发展而大火的Python,有着简单易学、速度快、可移植性、解释性、可拓展性、可嵌入性以及丰富的库等特点,使其在数学、大数据分析以及处理金融行业和财务(数据)分析中都有着得天独厚的优势。

Python在金融中的应用

Python的语法很容易实现那些金融算法和数学计算,每个数学语句都能转变成一行Python代码,每行允许超过十万的计算量。

在金融环境中迈出使用Python第一步的大部分人都可能要攻克某个算法问题。这和想要解出微分方程、求取积分或者可视化某些数据的科学工作者类似。

一般来说,在这一阶段,对正规开发过程、测试、文档或者部署没有太多的要求。然而,这一阶段似乎是人们特别容易爱上 Python 的时候,主要原因是 Python 的语法总体上和用于描述科学问题或者金融算法的数学语法相当近。

我们可以通过一个简单的金融算法——通过蒙特卡洛模拟方法估计欧式看涨期权的价值来说明这一现象。我们将考虑Black-Scholes-Merton(BSM)模型,在这种模型中期权的潜在风险遵循几何布朗运动。假定我们使用以下数值化参数进行估值:

● 初始股票指数水平 S0=100;

● 欧式看涨期权的行权价格 K=105;

● 到期时间 T=1 年;

● 固定无风险短期利率 r=5%;

● 固定波动率 σ=20%。

在 BSM 模型中,到期指数水平是一个随机变量,由公式 1-1 给出,其中 z 是一个标准正态分布随机变量。公式Black-Scholes-Merton(1973)到期指数水平

img

下面是蒙特卡洛估值过程的算法描述。

(1)从标准正态分布中取得 I 个(伪)随机数 z(i),i∈{1,2,…,I}。

(2)为给定的 z(i)和公式 1-1 计算所有到期指数水平 ST(i)。

(3)计算到期时期权的所有内在价值 hT(i)=max(ST(i) K,0)。

(4)通过公式 1-2 中给出的蒙特卡罗估算函数估计期权现值。公式 1-2 欧式期权的蒙特卡洛估算函数。

img

现在,我们需要将这个问题和算法翻译为Python代码。下面的代码将实现一些必要的步骤。

img

NumPy在这里作为主程序包使用。

定义模型并模拟参数值。

随机数生成器种子值固定。

提取标准正态分布随机数。

模拟期末价值。

计算期权到期收益。

计算蒙特卡洛估算函数。

打印输出估算结果。

以下 3 个方面值得注意。

语法:Python 语法与数学语法相当接近,例如参数赋值的方面。

翻译:每条数学或者算法语句一般都可以翻译为单行 Python 代码。

向量化:NumPy的强项之一是紧凑的向量化语法,例如,允许在单一代码行中进行 10 万次计算。这段代码可以用于 IPython 或 Jupyter Notebook 等交互式环境。但是,需要频繁重用的代码一般组织为所 谓的模块(或者脚本),也就是带有.py 后缀的 Python(文本)文件。本例的模块如下图所示,可以将其保存为名为 bsm_msc_euro.py 的文件。

img

img

简单算法示例说明,Python 的基本语法很适合为经典的科学语言二重奏——英语和数学来 提供补充。在科学语言组合中添加 Python 能使其更加全面。

Python用于分析学

Python效率较为明显的领域之一是交互式的数据分析,对于大数据来说它无疑是一个最合适的选择。这些领域从 IPython、Jupyter Notebook 等有力工具和pandas之类的程序中库获益良多。假设你是一位正在撰写硕士论文的金融专业学生,对标普500指数感兴趣,想要分析1年的历史指数水平,以了解指数在这段时间内的波动性,你希望找到证据证明这种变动性与某些典型的模型假设相反,

它是随时间变动而非固定。而且,应该对结果进行可视化,你要进行的主要的工作如下:

● 从网络上下载指数水平数据;

● 计算年化对数收益率的滚动标准差(波动率);

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值