大数据最新【详解】手撕 一维、二维、三维差分数组原理(附图解,2024年最新一份非常适合收藏的大数据开发进阶面试题

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

1.1 基本概念

**问

\color{Turquoise}问题描述

问题描述**:给定一个长度为 n 的一维数组 a[ ],数组内的每个元素都有初值,并对其进行一下操作:

(1)修改操作:进行 m 次区间修改,每次修改对这段区间【L,R】内的所有元素做相同的加减操作。

(2)查询操作:查询某个元素的值是多少



     如果简单的暴力遍历,那么对于每次的修改复杂度是 **O(n)** 的,有 m 次修改,此时复杂度为 **O(n\*m)** ,如果用差分法的话,复杂度将为 **O(n + m)**


**原理**







     



对于这个原数组 a[ ] = {a1,a2,a3,···,an},我们构造出这样一个数组 B[ ] = {b1,b2,b3,···,bn},使得 ai = b1 + b2 + ··· + bi,那么b[ ] 就称为 a[ ] 的差分,a[ ] 称为 b[ ] 的前缀和。可以发现,差分与前缀和是一组逆运算。



    如何利用差分数组对区间进行修改呢?为什么利用差分数组能提升修改的效率呢?


**1. 





区 


间 


修 


改 




\color{Purple}区间修改 


区间修改,时间复杂度为 O(1)**


​ 现在要将原数组 a[ ] 区间【L,R】上的每个数都加上一个 `c`,如下图所示:


![在这里插入图片描述](https://img-blog.csdnimg.cn/18d5f76d2894433a88b3c43e5b670683.png#pic_center)


* 第一个受到影响的差分数组中的元素为 bL],所以 `b[L] += c` ,对于 a[L] 后面的数都会受到 B[L] 的影响加上 c。
* 最后一个受影响的差分数组中的元素b[R],为了保证不影响到 R 后面的元素,所以我们需要 `b[R + 1] -= c`。


也就是说,对于 a[x] = b[1] + b[2] + ···+ b[x],利用差分数组能够精确地实现只修改指定区间内元素的目的,而不会修改区间外的a[ ] 的值,也就是:


* (1) 1 ≤ x < L, 前缀和 a[x] 不变。
* (2) L ≤ x ≤ R, 前缀和 a[x] 加上了 c 。
* (3) R < x ≤ N, 前缀和 a[x] 不变,因为被 b[R + 1] 中的c抵消了。


这样一来,就不必每次都对区间内所有的数进行处理,只需要修改区间【L,R】的两个端点 b[ ] 的值即可,复杂度是 **O(1)** 的。



```
void add(int l, int r, int c)
{
   b[l] += c;
   b[r + 1] -= c;
}

```

2. **单 


点 


查 


询 




\color{Purple}单点查询 


单点查询,时间复杂度为 O(n)**







     



根据定义,差分数组 b[ x ] 的前缀和 b[1] + b[ 2 ] + ··· + b[ x ] 就是原数组 a[x] 的值

void get(int x)
{
    for(int i = 1; i <= n; i ++ )
        sum[i] = sum[i - 1] + b[i];
    
    cout << sum[x];
}

初始化:我们其实不需要过分关注差分数组 b[] 是如何构造出来的,只需要知道差分与前缀和是互为逆运算即可。实际上,我们压根就不需要去构造差分数组 b[]



     一开始,我们就可以把原数组 `a[]` 看成全是 `0`,即 `a[ ] = {0,0,0,···0}` ,此时相应的差分数组 `b[]` 也全是 `0`,即 `b[ ] = {0,0,0,···0}`,那么对于原数组 `a[]` 的初始值:


* a[ 1 ] 相当于区间 【1,1】的每个数都加上 a[ 1 ]
* a[ 2 ] 相当于区间 【2,2】的每个数都加上 a[ 2 ]
* …
* a[ n ] 相当于区间 【n,n】的每个数都加上 a[ n ]


这样,只需要用上面的区间修改操作 `add()` 即可完成初始化赋值了。


#### 1.2 例题分析


【例题1】 [区间(interval)](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)


题目描述:小明喜欢数组。他现在有一个 n 个元素的数组 a,而他要对 a[L] ~ a[R]进行M次操作:


操作一:将 a[L] ~ a[R]内的元素都加上 c


操作二:将 a[L] ~ a[R]内的元素都减去 c


最后询问 a[L] ~ a[R] 内的元素之和


**AcCode**



```
#include<bits/stdc++.h>

using namespace std;
typedef long long LL;
const int N = 1000010;

LL a[N];

void add(int l, int r, int c)
{
   a[l] += c;
   a[r + 1] -= c;
}
int main()
{
   int n, m;
   scanf("%d%d", &n, &m);
   
   for(int i = 1; i <= n; i ++ ) // 将数组 a[] 看成自己的差分
   {
       int x;
       scanf("%d", &x);
       add(i, i, x);
   }
   
   for(int i = 1; i <= m; i ++ )// 修改操作
   {
       int k, l, r, c;
       scanf("%d%d%d%d", &k, &l, &r, &c);
       if(k == 1) add(l, r, -c);
       else add(l, r, c);
   }
   
   for(int i = 1; i <= n; i ++ )// 求差分数组 a[]的前缀和(即修改后a[] 的值)
      a[i] += a[i - 1];
     
   int l, r;
   scanf("%d%d", &l, &r);
   
   LL ans = 0;
   for(int i = l; i <= r; i ++ )
           ans += a[i];
   
   printf("%lld\n", ans);
   
   return 0;
   
}

```

**差分的局限性**:我们可以注意到,利用差分数组 b[] 可以将原来 




O 


( 


n 


) 



O(n) 


O(n) 的区间修改,降为 




O 


( 


1 


) 



O(1) 


O(1)的端点修改,从而提高了修改操作的效率。







     



但是,对于一次的查询操作,我们必须计算前缀和 b[1] + b[2] + ··· + b[x]才能将原数组 a[x] 求出,计算量是

O

(

n

)

O(n)

O(n)的,即一次查询的复杂度是

O

(

n

)

O(n)

O(n)的。也就是说,如果查询操作发生多次,例如 m 次修改,k 次查询,且修改和查询的顺序是随机的,即可能边修改边查询。此时总复杂度为:m 次修改复杂度

O

(

m

)

O(m)

O(m),k次查询复杂度

O

(

k

n

)

O(kn)

O(kn),即

o

(

m

k

n

)

o(m + kn)

o(m+kn)。还不如直接暴力来的快

O

(

m

n

k

)

O(mn + k)

O(mn+k)。



    可以看出,尽管差分数组对于 ”区间修改“很高效,但是对于”单点查询“来说略显吃力。此时有专门的数据结构来解决这一类问题:树状数组和线段树,详见本博客的树状数组和线段树专题。


### 2. 二维差分


#### 1.1 基本概念







     



有了一维差分的认识后,我们容易就能拓展到二维差分。一维是线性的,一段区间【L,R】有两个端点;二维是一个矩阵,一块区间由四个端点所围成。

**问

\color{Turquoise}问题描述

问题描述**: 在 n × n 的格子上有 m 个地毯。给出这些地毯的信息,问每个点被多少地毯覆盖。

输入: 第一行是两个整数n, m。接下来 m 行,每行 2 个坐标(x1, y1) 和 (x2, y2 ),代表一块地毯,左上角是 (x1, y1),右下角是(x2, y2)。

输出:输出n行,每行n个正整数。第i行第j列的正整数表示(i, j)这个格式被多少地毯覆盖。



    可以发现,这是前面例题区间(interval)的二维拓展,其修改和查询操作完全一样。







     



我们知道存储矩阵往往需要很大的空间。如果题目有空间的限制,例如100M = 100 * 1024 *1024 个字节(byte),那么对于矩阵每个元素是 4 个字节的 int型 来说,可以计算出最大的 maxn = 5120。不过,也可以像前面例题一样,不定义差分矩阵 b[][],直接将原矩阵a[][]看成自己的差分矩阵,这样一来就能剩下一半的空间了。



    同前面一样,我们先考虑能不能直接暴力求解。可以看出,每次矩阵修改的复杂度是  




O 


( 



n 


2 



) 



O(n^2) 


O(n2),共 m 次,总复杂度为 




O 


( 


m 


+ 



n 


2 



) 



O(m+n^2) 


O(m+n2),肯定会 TLE。


**( 


1 


) 


二 


维 


差 


分 


的 


定 


义 




\color{Purple}(1)二维差分的定义 


(1)二维差分的定义**







     



在一维差分中,原数组a[ ]是从第1个b[1]开始的差分数组 b[ ]的前缀和:a[x]= b[1] + b[2] + ··· + b[x]。



    在二维差分中,a[ ][ ]是差分数组b[ ][ ]的前缀和,即将原点坐标`(1,1)`和坐标`(i,j)`围成的矩阵中,所有的b[ ][ ]相加等于a[ i ][ j ]。我们可以把每个`b[][]`看成一个小格;在坐标`(1,1)`和`(i,j)`所围成的范围内,所有小格子加起来的总面积,等于 `a[i][j]`。如下图中,每个格子的面积是一个 b[ ][ ],例如阴影格子是b[ i ][ j ],它由4个坐标点组成: 





( 


i 


, 


j 


) 




\color{CadetBlue}(i, j) 


(i,j)、 





( 


i 


− 


1 


, 


j 


) 




\color{CadetBlue}(i - 1, j) 


(i−1,j)、 





( 


i 


, 


j 


− 


1 


) 




\color{CadetBlue}(i, j - 1) 


(i,j−1)、 





( 


i 


− 


1 


, 


j 


− 


1 


) 




\color{CadetBlue}(i - 1, j - 1) 


(i−1,j−1)。坐标点`(i, j)`的值是 a[ i ][ j ],它等于坐标`(1,1)`和`(i,j)`所围成的所有格子的总面积 。


![在这里插入图片描述](https://img-blog.csdnimg.cn/a5ec5e5af0e24da89c541fe6f77b2d0e.png#pic_center)







把 


每 


个 


a 


[ 


] 


[ 


] 


看 


成 


总 


面 


积 


, 


把 


每 


个 


b 


[ 


] 


[ 


] 


看 


成 


小 


格 


子 


的 


面 


积 



把每个a[][] 看成总面积,把每个b[][]看成小格子的面积 


把每个a[][]看成总面积,把每个b[][]看成小格子的面积  
 




     



由上图我们可以得到二维差分的定义:在二维情况下,差分就变成了相邻a[][]的"面积差’’,计算公式是:

b

[

i

]

[

j

]

=

a

[

i

]

[

j

]

a

[

i

1

]

[

j

]

a

[

i

]

[

j

1

]

a

[

i

1

]

[

j

1

]

\color{Red}b[i][j] = a[i][j] - a[i - 1][j] - a[i][j - 1] + a[i - 1][j - 1]

b[i][j]=a[i][j]−a[i−1][j]−a[i][j−1]+a[i−1][j−1]



    即利用上图红色大面积  





a 


[ 


i 


] 


[ 


j 


] 




\color{Maroon}a[i][j] 


a[i][j]减去两个小面积  





a 


[ 


i 


− 


1 


] 


[ 


j 


] 




\color{Turquoise}a[i- 1][j] 


a[i−1][j]、  





a 


[ 


i 


] 


[ 


j 


] 




\color{Green}a[i][j] 


a[i][j],由于两个小面积公共的部分`a[i-1][j -1]`被减去了 2 次,故要加回来 1 次  





a 


[ 


i 


− 


1 


] 


[ 


j 


− 


1 


] 




\color{Yellow}a[i - 1][j - 1] 


a[i−1][j−1]。


**( 


2 


) 


二 


维 


区 


间 


修 


改 




\color{Purple}(2) 二维区间修改 


(2)二维区间修改**







     



对于一维区间修改的操作,我们只需要修改区间的两个端点的b[]值。那么相应地,在二维情况下,一块区间是一个矩阵,由4个端点,只需要修改这 4个 b[][]值即可。如下图所示,

在这里插入图片描述

当我们对坐标点 (x1, y1) ~ (x2, y2)所围成的区间进行修改时,对应的4个端点的操作应为:

b[x1][y1] += c; // 二维区间的起点
b[x1][y2 + 1] -= c; // 把 x看成常数,y从 y1 到 y2
b[x2 + 1][y1] -= c;// 把 y看成常熟,x从 x1 到 x2
b[x2 + 1][y2 + 1] += c;// 由于前面两式把 c 减去了 2 次,故要加回 1 次

1.2 例题分析

【例题1】Monitor

题意:Xiaoteng 有一个 n×m 的矩形庄稼地,为了抓到小偷,安装了 p 个监控,每个监控都有一个矩形的监视范围,左上角为 (x1,y1),右下角为 (x2,y2)。小偷们会来偷 q 次,每次小偷们的作案地点都是一个矩形区域,左上角为 (x1,y1),右下角为 (x2,y2)。问每次小偷们作案时,能否看到全部的小偷。

思路:将每个监控的矩形监视区域里的每个数都加上 1,都操作在差分数组上。求差分数组的前缀和得到原数组,如果原数组中的值大于 1,说明该点被多个监控覆盖,我们只需要记 1 个即可。对于小偷们每次作案的矩形区域,看监控区域是否全部覆盖(是否全是1),如果全部覆盖(作案矩形同监控矩形的值相等)则输出 YES,否则,输出NO。

AcCode

#include<bits/stdc++.h>

using namespace std;
typedef long long  LL;

int main()
{
    int n, m;
    
    while(~scanf("%d%d", &n, &m))
    {
        vector<vector<int>> a(n + 10, vector<int>( m + 10, 0));
        
        int k;
        scanf("%d", &k);
        while(k -- )
        {
            int x1, y1, x2, y2;
            scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
            a[x1][y1] += 1;
            a[x2 + 1][y1] -= 1;
            a[x1][y2 + 1] -= 1;
            a[x2 + 1][y2 + 1] += 1;
        }
        
        // 求差分数组的前缀和,得到原数组的值
        for(int i = 1; i <= n; i ++ )
           for(int j = 1; j <= m; j ++ )
               a[i][j] += a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1];
        // 如果被该区域被监控覆盖多次,则只记一次
        for(int i = 1; i <= n; i ++ )
            for(int j = 1; j <= m; j ++ )
                if(a[i][j] > 1) a[i][j] = 1;
        
        // 对于小偷们每次作案的矩形区域,看监控区域是否全部覆盖(是否全是1)
        int p;
        scanf("%d", &p);
        while(p -- )
        {
            int x1, y1, x2, y2;
            scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
            
            int s1 = (x2 - x1 + 1) \* (y2 - y1 + 1);
            int s2 = f[x2][y2] - f[x1 - 1][y2] - f[x2][y1 - 1] + f[x1 - 1][y1 - 1];
            
            if(s1 == s2) puts("YES");
            else puts("NO");
        }
    }
    return 0;
}

3.三维差分

1.1 基本概念



    三维已是人类空间想象的一个大跨度,其差分难度较为复杂,不过没关系,下面我们将利用空间立体图来逐一理解。


**( 


1 


) 


三 


维 


差 


分 


的 


定 


义 




\color{Purple}(1)三维差分的定义 


(1)三维差分的定义**







     



元素值用三维数组 a[][][]来定义,差分数组b[][][]也是三维的。与之前低维度的差分类似,把三维差分想象成立体空间的操作。与之对应的小立方块有 8 个顶点,所以三维的区间需要修改 8 个b[][][]的值。



    在二维差分中,`a[][]` 是差分数组 `b[][]`的前缀和,即原点坐标 (1,1)和 坐标(i,j)围成的矩阵面积。







     



在三维差分中,a[][][] 是差分数组 b[][][]的前缀和,即原点坐标 (1, 1, 1) 和 坐标(i, j, k)围成的立体体积。同样地,我们把每个b[][][]看成一个小立方体,在坐标(1, 1, 1) ~ (i , j,k)所围成的空间中,所有小立体加起来的总体积即为a[i][j][k]。如下图所示,每个小立方体由 8 个端点定义。坐标点(i,j,k)的值是 a[i][j][k]; 图中小立方体的体积是差分数组 b[i][j][k]的值。

在这里插入图片描述



    类似的,在三维情况下,差分就变成了相邻的`a[][][]`的 ”体积差“。那么如何来写出差分的递推计算公式呢?


观察前面一、二维的前缀和我们可以发现,其前缀和规律十分吻合容斥原理。


![在这里插入图片描述](https://img-blog.csdnimg.cn/a79059b5c1d045958ee2876f347bdd24.png#pic_center)


即对于  





维 


度 


为 


t 




\color{Red}维度为 t 


维度为t 的前缀和,记 **S(t)** 为其前缀和的递推式,则我们有:  
 




S 


( 


t 


) 


= 


a 


[ 


t 


] 


+ 



∑ 



n 


= 


1 



∞ 



( 


− 


1 



) 



( 


n 


− 


1 


) 




S 


( 


[ 


t 


− 


1 


] 


的 


组 


合 


形 


式 


) 


, 



n 


  


为 


− 


1 


的 


个 


数 




S(t) = a[t]+ \sum\_{n = 1}^{∞}(-1)^{(n -1)}S( [t- 1]的组合形式),\color{CadetBlue}n~为 -1的个数 


S(t)=a[t]+n=1∑∞​(−1)(n−1)S([t−1]的组合形式),n 为−1的个数  
所以对于三维的差分数组`b[][][]`,其递推式如下:  
 





b 


[ 


i 


] 


[ 


j 


] 


[ 


k 


] 


= 


s 


[ 


i 


] 


[ 


j 


] 


[ 


k 


] 


− 


s 


[ 


i 


− 


1 


] 



![img](https://img-blog.csdnimg.cn/img_convert/d0108e44cbf813768bb0242c475310d8.png)
![img](https://img-blog.csdnimg.cn/img_convert/c31269373ccf42e274ec8532c6f22afb.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

1dd24e1b14d3db4f9a81a5121566a.png#pic_center)







     



类似的,在三维情况下,差分就变成了相邻的a[][][]的 ”体积差“。那么如何来写出差分的递推计算公式呢?

观察前面一、二维的前缀和我们可以发现,其前缀和规律十分吻合容斥原理。

在这里插入图片描述

即对于

t

\color{Red}维度为 t

维度为t 的前缀和,记 S(t) 为其前缀和的递推式,则我们有:

S

(

t

)

=

a

[

t

]

n

=

1

(

1

)

(

n

1

)

S

(

[

t

1

]

)

n

1

S(t) = a[t]+ \sum_{n = 1}{∞}(-1){(n -1)}S( [t- 1]的组合形式),\color{CadetBlue}n~为 -1的个数

S(t)=a[t]+n=1∑∞​(−1)(n−1)S([t−1]的组合形式),n 为−1的个数
所以对于三维的差分数组b[][][],其递推式如下:

b

[

i

]

[

j

]

[

k

]

=

s

[

i

]

[

j

]

[

k

]

s

[

i

1

]

[外链图片转存中…(img-gqzySg4K-1715444668179)]
[外链图片转存中…(img-0h1Drw4l-1715444668179)]

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 15
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值