网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
plt.legend()
ax2 =p1.add_subplot(1,3,2)
x=df[‘指标’]
y=df[‘2014年’]
plt.plot(x, y, label=‘2014’)
plt.legend()
ax3 =p1.add_subplot(1,3,3)
x=df[‘指标’]
y5=df[‘2018年’]
y4=df[‘2017年’]
y3=df[‘2016年’]
y2=df[‘2015年’]
y1=df[‘2014年’]
plt.plot(x, y1, label=‘2014’)
plt.plot(x, y2, label=‘2015’)
plt.plot(x, y3, label=‘2016’)
plt.plot(x, y4, label=‘2017’)
plt.plot(x, y5, label=‘2018’)
plt.title(‘面积’)
plt.xlabel(‘产品名称’)
plt.ylabel(‘产量’)
plt.xticks(x,[‘A’,‘B’,‘C’,‘D’,‘E’])
plt.legend()
plt.show()
>
> 1. `import pandas as pd`:导入pandas库,并使用别名`pd`。Pandas是Python中强大的数据操作和分析库。
> 2. `import numpy as np`:导入NumPy库,并使用别名`np`。NumPy是Python中用于科学计算的基础包,提供了对数组、矩阵和数学函数的支持。
> 3. `import matplotlib.pyplot as plt`:从Matplotlib库中导入`pyplot`模块,并使用别名`plt`。Matplotlib是一个全面的库,用于在Python中创建静态、动态和交互式可视化。
> 4. `p1 = plt.figure(figsize=(50,10),dpi=80)`:创建一个新的图形(`p1`),大小为50x10英寸,分辨率为80像素每英寸(dpi)。`figure()`函数用于初始化一个新的图形。
> 5. `ax1 = p1.add_subplot(1,3,1)`:将一个子图(`ax1`)添加到图形(`p1`)中。子图的布局
>
> 布局(layout)是指网页中各个元素的排列方式和组织结构。它决定了网页的整体视觉效果和用户界面的布置方式。布局通常通过使用HTML和CSS来实现。
>
![img](https://img-blog.csdnimg.cn/img_convert/d9d7a3d7a2658d351c3c803f6b4de2a0.png)
![img](https://img-blog.csdnimg.cn/img_convert/4c21995b2fcb201c274aad2b5401fd61.png)
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**