大数据大作业(课程设计)

本文介绍了如何使用Java编写HadoopMapReduce程序进行词频统计,以及后续使用Python和ECharts进行数据处理和可视化,展示了从数据处理到可视化的完整流程。
摘要由CSDN通过智能技术生成
    if(otherArgs.length < 2) {
        System.err.println("Usage: wordcount <in> [<in>...] <out>");
        System.exit(2);
    }
    // 如果参数不足两个,则输出用法提示并退出程序

    Job job = Job.getInstance(conf, "word count");  // 创建一个作业对象
    job.setJarByClass(lihongbo.class);  // 设置作业运行时使用的 JAR 文件
    job.setMapperClass(lihongbo.TokenizerMapper.class);  // 设置 Mapper 类
    job.setCombinerClass(lihongbo.IntSumReducer.class);  // 设置 Combiner 类(可选)
    job.setReducerClass(lihongbo.IntSumReducer.class);  // 设置 Reducer 类
    job.setOutputKeyClass(Text.class);  // 设置输出键类型
    job.setOutputValueClass(IntWritable.class);  // 设置输出值类型

    for(int i = 0; i < otherArgs.length - 1; ++i) {
        FileInputFormat.addInputPath(job, new Path(otherArgs[i]));  // 添加输入路径
    }
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));  // 设置输出路径

    System.exit(job.waitForCompletion(true) ? 0 : 1);  // 启动作业并等待其完成,返回状态码 0 表示成功,1 表示失败
}

public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
    // 定义一个 Mapper 类,继承自 Mapper<Object, Text, Text, IntWritable>

    private static final IntWritable one = new IntWritable(1);  // 定义一个常量 one,值为 1
    private Text word = new Text();  // 定义一个文本类型变量 word

    public TokenizerMapper() {
        // 构造函数,没有实际操作
    }

    public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context) 
            throws IOException, InterruptedException {
        // 实现 Mapper 类中的 map 函数,对输入数据进行处理

        StringTokenizer itr = new StringTokenizer(value.toString());  // 将输入数据转化为字符串
        while(itr.hasMoreTokens()) {  // 如果还有单词可以读取
            this.word.set(itr.nextToken());  // 获取下一个单词
            context.write(this.word, one);  // 输出键值对,键为单词,值为 one
        }
    }
}

public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    // 定义一个 Reducer 类,继承自 Reducer<Text, IntWritable, Text, IntWritable>

    private IntWritable result = new IntWritable();  // 定义一个整数类型变量 result,用于保存累加结果

    public IntSumReducer() {
        // 构造函数,没有实际操作
    }

    public void reduce(Text key, Iterable<IntWritable> values, 
                       Reducer<Text, IntWritable, Text, IntWritable>.Context context)
            throws IOException, InterruptedException {
        // 实现 Reducer 类中的 reduce 函数,对经过 Mapper 处理后的数据进行汇总

        int sum = 0;  // 定义一个整数变量 sum&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值