数学基础从高一开始6、全称量词与存在量词_全称量词命题 真命题

B组:

(1)有些三角形是等腰三角形;

(2)至少有一个四边形,它的对角线互相垂直;

(3)存在一个x∈R,使得x^{2}>0.。(事物的一部分)

全称量词

“任意一个” ,“每一个”,“所有的”在逻辑中通常叫做全称量词,用符号“\forall”表示.含有全称量词的命题,叫做全称量词命题。

A组命题改用集合语言叙述为:

(1)对于整数集合中的任意一个元素x,2.x+1是整数。

(2)素数集合中的任意一个元素x都是奇数。

(3)矩形集合中的任意一个元素x都是平行四边形。

结构特点:集合M中的任意一个元素x,都满足条件p。

一般形式:对M中任意一个x,都有p(x)成立。

用符号简记为: \forallx∈M, p(x)。

存在量词

“有些”、“至少有一个”、存在一个”在逻辑中通常叫做存在量词,用符号“\exists”表示.含有存在量词的命题,叫做存在量词命题。

结构特点:集合M中至少存在一个元素x,满足条件p。

一般形式:存在M中的元素x,使得p(x)成立。

用符号简记为:\existsx∈M, p(x)。

1.判断命题的真假

例1:判断下列全称量词命题的真假:

(1)\forallx∈R,|x|+1≥l;

(2)对任意一个无理数x,x^{2}也是无理数。

分析:

要判定全称量词命题“\forallx∈M,p(x)” 为真,就需要对集合M中的每个元素x,证明p(x)成立; 要判定它为假,举一个反例即可:在集合M中找一个x0,使得p(x0)不成立。

(1)、\forallx∈R,总有|x|≥0,因此|x+1≥1.所以该命题是真命题。
(2)、\sqrt{2}是无理数,但(\sqrt{2})^{2}=2是有理数。所以该命题是假命题。

2.判断命题的真假

例2:判断下列存在量词命题的真假:

(1)有一个偶数是素数;

(2)存在一个三角形,它的内角和不等于180^{0}

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

需要这份系统化资料的朋友,可以戳这里获取

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值