网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
在数据的处理过程中,数据需要经过人机交互、传输、存储等等,每个环节都可能出现错误而产生数据异常,导致数据质量问题。由此我们可以把数据质量问题归类为:
- 数据约束关系问题:例如缺乏唯一性约束关系,或缺乏引用性约束关系等
- 数据本身问题:例如数据为空值、数据重复、数据缺失等等
- 数据处理过程异常:例如状态缺失、未按预期处理、无法跟踪、过程中数据缺失等等
- 数据处理性能问题:例如处理时效不足、IO读写瓶颈、存储异常等等
怎么做数据质量控制
对数据仓库自身数据的监控到数据处理形成数据的过程的管理,是一项长期复杂的过程,必须建立有效的数据质量评测体系。
尤为重要的是整个数据质量评测体系须与企业绩效和价值建立起直接的关系。
从实践和查看的相关资料来看,我做数据质量控制可以从以下过程来逐步实践:
- 全面梳理企业所处行业的数据特征,建立起数据元模型
- 在数据元模型的基础上,根据业务和技术需要定义多个质量模型
- 在此基础上,针对企业数据质量模型进行抽象,形成一个可控制的元质量扩展模型
- 最终在这个基础上为企业数据质量体系定义一个完整的框架
一些思考
在当下国内软件测试行业人员综合能力不足的情况下如何开展数据质量体系的建立和实践呢?
- 软件测试工程师需要对各种质量标准应该有比较深刻的理解和实践经验
- 对于所从事的行业用户特征、商业价值、业务流程、数据流程、数据特征、系统架构、技术、工具等等需要有广泛的了解和实践
- 在技术和工具上,软件测试工程师需要具备整合和二次定制的能力,尤其是从质量和测试的角度来进行把控和掌控
- 在实践过程中,软件测试工程师需要不拘泥于自身的角色,要具备足够的跨角色、跨团队服务和推进的意识和执行力
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**