以古人的话共勉:
道阻且长,行则将至;行而不辍,未来可期!
本栏目大数据开发岗高频面试题主要出自
大数据技术
专栏的各个小专栏,由于个别笔记上传太早,排版杂乱,后面会进行原文美化、增加。
文章目录
不要急着往下滑,默默想5min,看看这5道面试题你都会吗?
面试题 01、请简述如何使用Kafka Simple Java API 实现数据消费?描述具体的类及方法
面试题02、请简述Kafka生产数据时如何保证生产数据不丢失?
面试题 03 请简述Kafka生产数据时如何保证生产数据不重复?
面试题04、Kafka中生产者的数据分区规则是什么,如何自定义分区规则?
面试题05、Kafka中消费者消费数据的规则是什么?
面试题 01、请简述如何使用Kafka Simple Java API 实现数据消费?描述具体的类及方法
•step1:构建消费者连接对象:KafkaConsumer
–需要配置对象:管理配置,例如连接地址:Properties
•step2:消费者需要订阅Topic
–KafkaConsumer:subscribe(List)
•step3:消费数据
–KafkaConsumer:poll:实现拉取消费数据
–ConsumerRecords:拉取到的所有数据集合
–ConsumerRecord:消费到的每一条数据
•topic:获取数据中的Topic
•partition:获取数据中的分区编号
•offset:获取数据的offset
•key:获取数据中的Key
•value:获取数据中的Value
面试题02、请简述Kafka生产数据时如何保证生产数据不丢失?
•acks机制:当接收方收到数据以后,就会返回一个确认的ack消息
•生产者向Kafka生产数据,根据配置要求Kafka返回ACK
–ack=0:生产者不管Kafka有没有收到,直接发送下一条
•优点:快
•缺点:容易导致数据丢失,概率比较高
–ack=1:生产者将数据发送给Kafka,Kafka等待这个分区leader副本写入成功,返回ack确认,生产者发送下一条
•优点:性能和安全上做了平衡
•缺点:依旧存在数据丢失的概率,但是概率比较小
–ack=all/-1:生产者将数据发送给Kafka,Kafka等待这个分区所有副本全部写入,返回ack确认,生产者发送下一条
•优点:数据安全
•缺点:慢
•如果使用ack=all,可以搭配min.insync.replicas参数一起使用,可以提高效率
–min.insync.replicas:表示最少同步几个副本以后,就返回ack
•如果生产者没有收到ack,就使用重试机制,重新发送上一条消息,直到收到ack
面试题 03 请简述Kafka生产数据时如何保证生产数据不重复?
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**