既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
a
2
,
…
a
m
)
∈
R
∧
(
b
1
,
b
2
,
…
b
n
)
∈
S
}
。
R×S={(a_1,a_2,…a_m,b_1,b_2,…b_n)| (a_1,a_2,…a_m) ∈R ∧ (b_1,b_2,…b_n) ∈ S}。
R×S={(a1,a2,…am,b1,b2,…bn)∣(a1,a2,…am)∈R∧(b1,b2,…bn)∈S}。
严格地讲应该是广义的笛卡尔积
- R
R
R:
n
n
n目关系,
k
1
k_1
k1个元组
- S
S
S:
m
m
m目关系,
k
2
k_2
k2个元组
R
×
S
R×S
R×S
- 列:
m
n
m+n
m+n列元组的集合
+ 元组的前
n
n
n列是关系
R
R
R的一个元组
+ 后
m
m
m列是关系
S
S
S的一个元组
- 行:
k
1
×
k
2
k_1×k_2
k1×k2个元组
具体如下图所示:
1.2 专门的关系运算
在讲解之前,我们先引入几个记号,这样有助于下面的理解,确实关系代数后半部分有点难理解。
**(1)
R
,
t
∈
R
,
t
[
A
i
]
R,t\in R,t[A_i]
R,t∈R,t[Ai]**
设关系模式为
R
(
A
1
,
A
2
,
…
,
A
n
)
R(A_1,A_2,…,A_n)
R(A1,A2,…,An),它的一个关系设为
R
R
R,
t
∈
R
t\in R
t∈R表示
t
t
t是
R
R
R的一个元组,
t
[
A
i
]
t[A_i]
t[Ai]则表示元组t中相应于属性
A
i
A_i
Ai的一个分量。
(2)
t
r
t
s
⏞
\overbrace{t_rt_s}
trts
,
R
R
R为
n
n
n目关系,
S
S
S为
m
m
m目关系。
t
r
∈
R
,
t
s
∈
S
,
t
r
t
s
⏞
t_r\in R,t_s\in S, \overbrace{t_r t_s}
tr∈R,ts∈S,trts
称为元组的连接。
t
r
t
s
⏞
\overbrace{t_r t_s}
trts
是一个
n
m
n + m
n+m列的元组,前
n
n
n个分量为
R
R
R中的一个
n
n
n元组,后
m