网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
快速:相比面向磁盘的MapReduce,Spark能够更高效地处理迭代计算、实时计算和交互式数据查询等需求。因为它能够将数据存储在内存中并基于内存进行计算,这使得Spark能够在多个不同数据源的数据提供近乎实时的处理性能,适用于需要多次操作特定数据集的应用场景。
简洁易用:Spark提供了丰富的API接口,可以使用Java、Python、Scala等语言编写程序,并且支持SQL查询、流处理、机器学习等多种功能。
通用性:Spark不仅可以处理结构化数据,还可以处理半结构化数据、非结构化数据和图形数据等复杂数据类型。
支持多种运行模式:Spark可以在本地模式、独立模式、YARN模式和Mesos模式等多种环境下