网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
十套样题之第一套
任务一
编写Scala代码,使用Spark将MySQL的shtd_store库中表user_info、sku_info、base_province、base_region、order_info、order_detail的数据增量抽取到Hive的ods库中对应表user_info、sku_info、base_province、base_region、order_info、order_detail中。(若ods库中部分表没有数据,正常抽取即可)
第一题
- 抽取shtd_store库中user_info的增量数据进入Hive的ods库中表user_info。根据ods.user_info表中operate_time或create_time作为增量字段(即MySQL中每条数据取这两个时间中较大的那个时间作为增量字段去和ods里的这两个字段中较大的时间进行比较),只将新增的数据抽入,字段名称、类型不变,同时添加静态分区,分区字段为etl_date,类型为String,且值为当前比赛日的前一天日期(分区字段格式为yyyyMMdd)。使用hive cli执行show partitions ods.user_info命令,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
代码实现:
import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
object Task1_1 {
def main(args: Array[String]): Unit = {
// 连接 Spark
val conf = new SparkConf().setAppName("Task1_1").setMaster("spark://master:7077")
val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
spark.sparkContext.setLogLevel("OFF")
spark.conf.set("hive.exec.dynamic.partition.mode", "nonstrict")
// 连接数据库
val mysqldf = spark.read.format("jdbc")
.option("driver", "com.mysql.jdbc.Driver")
.option("url", "jdbc:mysql://master:3306/shtd_store?useSSL=false")
.option("user", "root")
.option("password", "123456")
.option("dbtable", "user_info").load()
// 创建临时表
spark.sql("select * from ods.user_info").createOrReplaceTempView("ods")
mysqldf.createOrReplaceTempView("user_info")
// 筛选数据
val df1 = spark.sql(
"""
|select
|a.*
|from
|user_info a
|left join
|ods b
|on
|a.id = b.id
|where
|greatest(a.create_time,a.operate_time) > greatest(b.create_time,b.operate_time)
![img](https://img-blog.csdnimg.cn/img_convert/678ef8a145de9e32dd3436f36b499a34.png)
![img](https://img-blog.csdnimg.cn/img_convert/c5f5ab6edb133bb78e7602a1da5502b2.png)
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**