【算法入门&图论】【模板】拓扑排序 【模板】单源最短路2 最小生成树_ab15 【模板(3)

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取


🔥前言

本专栏收录的均为牛客网的算法题目,内含链表、双指针、递归、动态规划、基本数据结构等算法思想的具体运用。牛客网不仅有大量的经典算法题目,也有大厂的面试真题,面试、找工作完全可以来这里找机会。此外,网站内的编码主题多样化,调试功能可运用性强,可谓是非常注重用户体验。这么好的免费刷题网站还不快入手吗,快去注册开启算法百炼成神之路吧!

1、AB13 【模板】拓扑排序

学会使用邻接表解决图论问题,巧妙利用vector容器

题目链接:拓朴排序

在这里插入图片描述

1.1、解题思路

解决拓扑排序之前要先认识什么是拓扑排序:

对一个有向无环图(Directed Acyclic Graph简称DAG)图G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点uv,若边<u,v>∈E(G)则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序

解决步骤:

  1. 使用邻接表将顶点联系起来,辅助数组inDegree表示每个顶点的入度。
  2. 借助队列和计数器变量来判断该有向图是否有环:
    • 将入度为零的顶点入队(也就是拓扑图第一个顶点)
    • 取队首,遍历与之相邻的顶点,若该顶点入度减一后为零就将其入队
    • 只要队列非空就循环操作,计算器循环加一,与顶点数比较是否相等
  3. 本题末尾也不能输出空格,因此输出拓扑序列时要加限制条件

1.2、代码实现与注释

本题源码:

#include<iostream>
#include<vector>
#include<queue>
#define M 200001
using namespace std;

int main() {
    int n, m;
    cin >> n >> m;
    vector<int> adjList[M]; // 模拟邻接表
    int inDegree[M] = { 0 };// 记录每个顶点的入度
    int a, b;
    for (int i = 0; i < m; i++) {
        cin >> a >> b;
        adjList[a].push\_back(b);
        inDegree[b]++;
    }
    queue<int> que; // 将初始入度为零的顶点入队
    for (int i = 1; i <= n; i++) {
        if (inDegree[i] == 0)
            que.push(i);
    }

    int cnt = 0; // 用来计数,判断改图是否有环
    vector<int> res; // 用来输出顶点序列
    while (!que.empty()) {
        int u = que.front();
        que.pop();
        res.push\_back(u);
        for (int i = 0; i < adjList[u].size(); i++) { // 遍历u的相邻顶点
            int v = adjList[u][i];
            if (--inDegree[v] == 0)
                que.push(v);
        }
        cnt++;
    }
    // 若计数器与顶点数相同则图无环,存在拓扑排序
    if (cnt == n) {
        for (int i = 0; i < res.size(); i++) {
            cout << res[i];
            // 限制输出空格的条件
            if (i != res.size() - 1) {
                cout << " ";
            }
        }
    } else {
        cout << -1;
    }
    return 0;
}

重要注释:

  • adjList数组是vector类型的,用来模拟邻接表
    • 使用每个元素为一个数组的vector容器模拟邻接表进行建图
    • vector[a]所对应的数组中存储着该顶点所指向的其他顶点
    • inDegree数组代表每一个顶点的入度情况
  • 使用一个队列,初始时将所有入度为0的顶点全部入队,之后采用BFS的思想:
    • 依次取出队头元素并存入结果数组中,然后在邻接表中遍历该队头元素所指向的其他顶点
    • 将这些顶点的入度全部减一,若减一后某顶点的入度变为0,则将该顶点进行入队操作,
      重复此步骤直至队列为空为止。
  • 设置一个用于判断图中是否存在环(是否可以得到拓扑序列)的计数器,在弹出队头元素后要将计数器加一,最后队列为空后,若计数器的值与顶点数相同,则说明图不存在环,可以得到拓扑序列。

2、AB14 最小生成树

题目链接:最小生成树

在这里插入图片描述

2.1、解题思路

本题要求在最小花费下将 n 户人家连接起来,很显然是最小生成树的问题,我采用prim算法:

  1. 将二维数组cost按权升序排序,那么cost[0][2]就是最小的一个权值
  2. 将连接这条边的两个顶点放入unordered_set容器:
    • unordered_set 容器的元素是无序的,可以用来给顶点去重
    • 内置的 find 方法也很好用
  3. 接下来遍历cost二维数组,直到所有顶点全部放入容器中,遍历结束
  4. 将遍历中权值的和返回,程序结束

2.2、代码实现与注释

本题源码:

class Solution {
  public:
    /\*\*
 \* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
 \*
 \* 返回最小的花费代价使得这n户人家连接起来
 \* @param n int n户人家的村庄
 \* @param m int m条路
 \* @param cost intvector<vector<>> 一维3个参数,表示连接1个村庄到另外1个村庄的花费的代价
 \* @return int
 \*/

    // 自定义排序规则:按权递增
    static bool cmp(vector<int>& x, vector<int>& y) {
        return x[2] < y[2];
    }
    int miniSpanningTree(int n, int m, vector<vector<int> >& cost) {
        unordered_set<int> points; // 记录不重复的点
        int res = 0;
        sort(cost.begin(), cost.end(), cmp);
        res += cost[0][2]; // 此时res 为最小权值
        // 将最小边加入
        points.insert(cost[0][0]);
        points.insert(cost[0][1]);
        while (1) {
            if (points.size() == n)
                break; // 所有的点连同后退出循环
            // 遍历剩余的边
            for (auto it = cost.begin(); it != cost.end(); it++) {
                // 如果边仅有一个点在集合内就加入
                if ((points.find((\*it)[0]) != points.end() &&
                    points.find((\*it)[1]) == points.end()) ||
                    (points.find((\*it)[1]) != points.end() &&
                    points.find((\*it)[0]) == points.end()))
                    {
                        res += (\*it)[2];
                        points.insert((\*it)[0]);
                        points.insert((\*it)[1]);
                        cost.erase(it); // 删除该边
                        break;
                    }
            }
        }
        return res;
    }
};


![img](https://img-blog.csdnimg.cn/img_convert/ca8a8ff7d89a56f99c7fc0b998f38513.png)
![img](https://img-blog.csdnimg.cn/img_convert/acd408c9adb114e239f79e62e8ad368d.png)
![img](https://img-blog.csdnimg.cn/img_convert/bbb18e11d6e8e0d3d77610ee3c8f0d11.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**

WX01Hs-1715371051947)]

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值