网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
题目链接:拓朴排序
1.1、解题思路
解决拓扑排序之前要先认识什么是拓扑排序:
对一个有向无环图(Directed Acyclic Graph简称
DAG
)图G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u
和v
,若边<u,v>∈E(G)
,则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。
解决步骤:
- 使用邻接表将顶点联系起来,辅助数组
inDegree
表示每个顶点的入度。 - 借助队列和计数器变量来判断该有向图是否有环:
- 将入度为零的顶点入队(也就是拓扑图第一个顶点)
- 取队首,遍历与之相邻的顶点,若该顶点入度减一后为零就将其入队
- 只要队列非空就循环操作,计算器循环加一,与顶点数比较是否相等
- 本题末尾也不能输出空格,因此输出拓扑序列时要加限制条件
1.2、代码实现与注释
本题源码:
#include<iostream>
#include<vector>
#include<queue>
#define M 200001
using namespace std;
int main() {
int n, m;
cin >> n >> m;
vector<int> adjList[M]; // 模拟邻接表
int inDegree[M] = { 0 };// 记录每个顶点的入度
int a, b;
for (int i = 0; i < m; i++) {
cin >> a >> b;
adjList[a].push\_back(b);
inDegree[b]++;
}
queue<int> que; // 将初始入度为零的顶点入队
for (int i = 1; i <= n; i++) {
if (inDegree[i] == 0)
que.push(i);
}
int cnt = 0; // 用来计数,判断改图是否有环
vector<int> res; // 用来输出顶点序列
while (!que.empty()) {
int u = que.front();
que.pop();
res.push\_back(u);
for (int i = 0; i < adjList[u].size(); i++) { // 遍历u的相邻顶点
int v = adjList[u][i];
if (--inDegree[v] == 0)
que.push(v);
}
cnt++;
}
// 若计数器与顶点数相同则图无环,存在拓扑排序
if (cnt == n) {
for (int i = 0; i < res.size(); i++) {
cout << res[i];
// 限制输出空格的条件
if (i != res.size() - 1) {
cout << " ";
}
}
} else {
cout << -1;
}
return 0;
}
重要注释:
adjList
数组是vector
类型的,用来模拟邻接表- 使用每个元素为一个数组的
vector
容器模拟邻接表进行建图 vector[a]
所对应的数组中存储着该顶点所指向的其他顶点inDegree
数组代表每一个顶点的入度情况
- 使用每个元素为一个数组的
- 使用一个队列,初始时将所有入度为0的顶点全部入队,之后采用
BFS
的思想:- 依次取出队头元素并存入结果数组中,然后在邻接表中遍历该队头元素所指向的其他顶点
- 将这些顶点的入度全部减一,若减一后某顶点的入度变为0,则将该顶点进行入队操作,
重复此步骤直至队列为空为止。
- 设置一个用于判断图中是否存在环(是否可以得到拓扑序列)的计数器,在弹出队头元素后要将计数器加一,最后队列为空后,若计数器的值与顶点数相同,则说明图不存在环,可以得到拓扑序列。
2、AB14 最小生成树
题目链接:最小生成树
2.1、解题思路
本题要求在最小花费下将 n 户人家连接起来,很显然是最小生成树的问题,我采用prim
算法:
- 将二维数组
cost
按权升序排序,那么cost[0][2]
就是最小的一个权值 - 将连接这条边的两个顶点放入
unordered_set
容器:unordered_set
容器的元素是无序的,可以用来给顶点去重- 内置的
find
方法也很好用
- 接下来遍历
cost
二维数组,直到所有顶点全部放入容器中,遍历结束 - 将遍历中权值的和返回,程序结束
2.2、代码实现与注释
本题源码:
class Solution {
public:
/\*\*
\* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
\*
\* 返回最小的花费代价使得这n户人家连接起来
\* @param n int n户人家的村庄
\* @param m int m条路
\* @param cost intvector<vector<>> 一维3个参数,表示连接1个村庄到另外1个村庄的花费的代价
\* @return int
\*/
// 自定义排序规则:按权递增
static bool cmp(vector<int>& x, vector<int>& y) {
return x[2] < y[2];
}
int miniSpanningTree(int n, int m, vector<vector<int> >& cost) {
unordered_set<int> points; // 记录不重复的点
int res = 0;
sort(cost.begin(), cost.end(), cmp);
res += cost[0][2]; // 此时res 为最小权值
// 将最小边加入
points.insert(cost[0][0]);
points.insert(cost[0][1]);
while (1) {
if (points.size() == n)
break; // 所有的点连同后退出循环
// 遍历剩余的边
for (auto it = cost.begin(); it != cost.end(); it++) {
// 如果边仅有一个点在集合内就加入
if ((points.find((\*it)[0]) != points.end() &&
points.find((\*it)[1]) == points.end()) ||
(points.find((\*it)[1]) != points.end() &&
points.find((\*it)[0]) == points.end()))
{
res += (\*it)[2];
points.insert((\*it)[0]);
points.insert((\*it)[1]);
cost.erase(it); // 删除该边
break;
}
}
}
return res;
}
};
重要注释:
cmp
是自定义的一个按权递增的排序函数,配合sort
函数来将cost
排序- 相关知识点可以参考我的博文:自定义排序规则
auto
关键字可以自动推导表达式类型,在这里就相当于vector<vector<int>>::iterator
if
的条件很长,但其实就是将有且仅有一个顶点在points
中的边找到:- 获取该边的权值并求和,将另一顶点插入到
points
中 - 将该边删除,重新遍历
cost
,直到全部顶点被插入到points
中
- 获取该边的权值并求和,将另一顶点插入到
- 最终的
res
就是该题的结果,即最小花费。
3、AB15 单源最短路2
题目链接:单源最短路2
3.1、解题思路
使用Dijkstra
算法(即不断从未处理集合中找当前距离源点最近的顶点以添加到已处理集合中,直至未处理集合为空的算法思想)
- 对于无向图,采用邻接矩阵表示点与点的连接关系以及距离
- 使用数组
dist
记录每个顶点与源点的距离:- 本题中就是记录顶点1与其他顶点的距离
- 用一个布尔类型的数组记录顶点的处理情况:
- 初始状态全部设为
false
,一经处理就设为true
- 初始状态全部设为
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
g-1715718077059)]
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!