网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
因为是从头读取的数据,所以借助于Changelog Normalize
物化节点,在状态中维护历史接收到的数据,这样就可以获取到完整的Changelog数据了。
(2)Input
如果将changelog-producer
指定为input,表示在向Paimon表中存储数据的时候会将数据源中的Changelog也存储到Paimon表中的Changelog文件中。
典型应用场景是这样的:数据源是MySQL的binlog日志,此时数据源中具有完整的Changelog,所以可以完全依赖数据源中的Changelog,并且后续可以将这份Changelog提供给下游任务读取时使用。这样下游任务读取数据时就不需要产生Changelog Normalize
物化节点了。
注意:如果我们把MySQL的binlog日志实时写入到了Kafka中,那么Kafka中存储的数据也相当于具有了完整的Changelog,此时在从Kafka这个数据源中读取数据的时候也是可以将changelog-producer
设置为input的。
看这个图,当我们通过Flink CDC去采集数据库中的数据的时候,是可以获取到数据库中的所有Changelog变更日志数据的,所以里面会包含完整的+I、-U、+U、-D
这些类型的数据。
此时在Paimon中创建表的时候,就可以指定changelog-producer=input
,这样在存储数据的时候就会单独存储一份Changelog File。
下游任务在从Paimon表中读取数据的时候就不需要再产生Changelog Normalize
物化节点生成Changelog了,直接从Paimon表中读取Changelog File即可获取到完整的Changelog数据。
下面我们来具体演示一下建表语句中指定changelog-producer=input
时的效果
创建package:tech.xuwei.paimon.changelogproducer.input
创建object:FlinkDataStreamWriteToPaimonForInput
这个Object负责向Paimon表中模拟写入数据。
代码如下:
package tech.xuwei.paimon.changelogproducer.input
import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.api.common.typeinfo.Types
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.table.api.{DataTypes, Schema}
import org.apache.flink.table.connector.ChangelogMode
import org.apache.flink.types.{Row, RowKind}
/**
* 使用Flink DataStream API向Paimon表中写入数据
* Created by xuwei
*/
object FlinkDataStreamWriteToPaimonForInput {
def main(args: Array[String]): Unit = {
//获取执行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
val tEnv = StreamTableEnvironment.create(env)
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
//Row.ofKind(RowKind.UPDATE_BEFORE, "jack", Int.box(10))//-U
//Row.ofKind(RowKind.UPDATE_AFTER, "jack", Int.box(11))//+U
//Row.ofKind(RowKind.DELETE, "jack", Int.box(11))//-D
)(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))
//将DataStream转换为Table
val schema = Schema.newBuilder()
.column("name", DataTypes.STRING().notNull())//主键非空
.column("age", DataTypes.INT())
.primaryKey("name")//指定主键
.build()
val table = tEnv.fromChangelogStream(dataStream,schema,ChangelogMode.all())
//创建Paimon类型的Catalog
tEnv.executeSql(
"""
|CREATE CATALOG paimon_catalog WITH (
| 'type'='paimon',
| 'warehouse'='hdfs://bigdata01:9000/paimon'
|)
|""".stripMargin)
tEnv.executeSql("USE CATALOG paimon_catalog")
//注册临时表
tEnv.createTemporaryView("t1",table)
//创建Paimon类型的表
tEnv.executeSql(
"""
|-- 注意:这里的表名使用反引号进行转义,否则会导致SQL DDL语句解析失败。
|CREATE TABLE IF NOT EXISTS `changelog_input` (
| name STRING,
| age INT,
| PRIMARY KEY (name) NOT ENFORCED
|) WITH (
| 'changelog-producer' = 'input'
|)
|""".stripMargin)
//向Paimon表中写入数据
tEnv.executeSql(
"""
|INSERT INTO `changelog_input`
|SELECT name,age FROM t1
|""".stripMargin)
}
}
注意:在执行代码的时候通过修改env.fromElements(...)
中的注释来实现实时产生多种类型数据的效果。
接下来创建Object:FlinkDataStreamReadFromPaimonForInput
这个Object负责从Paimon表中实时读取数据。
代码如下:
package tech.xuwei.paimon.changelogproducer.input
import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.configuration.{Configuration, RestOptions}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
/**
* 使用Flink DataStream API从Paimon表中读取数据
* Created by xuwei
*/
object FlinkDataStreamReadFromPaimonForInput {
def main(args: Array[String]): Unit = {
val conf = new Configuration()
//指定WebUI界面的访问端口,默认就是8081
conf.setString(RestOptions.BIND_PORT,"8081")
//为了便于在本地通过页面观察任务执行情况,所以开启本地WebUI功能
val env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf)
env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
//禁用Chain,把多个算子拆分开单独执行,便于在开发和测试阶段观察,正式执行时不需要禁用Chain
env.disableOperatorChaining()
val tEnv = StreamTableEnvironment.create(env)
//创建Paimon类型的Catalog
tEnv.executeSql(
"""
|CREATE CATALOG paimon_catalog WITH (
| 'type'='paimon',
| 'warehouse'='hdfs://bigdata01:9000/paimon'
|)
|""".stripMargin)
tEnv.executeSql("USE CATALOG paimon_catalog")
//执行SQL查询,打印输出结果
val execSql =
"""
|SELECT * FROM `changelog_input` -- 此时默认只能查到数据的最新值
|-- /*+ OPTIONS('scan.mode'='from-snapshot','scan.snapshot-id' = '1') */ -- 通过动态表选项来指定数据读取(扫描)模式,以及从哪里开始读取
|""".stripMargin
val table = tEnv.sqlQuery(execSql)
table.execute().print()
}
}
接下来先运行FlinkDataStreamWriteToPaimonForInput
向Paimon表中写入+I
类型的数据。
再运行FlinkDataStreamReadFromPaimonForInput
负责读取数据。
此时可以看到控制台输出如下结果:
+----+--------------------------------+-------------+
| op | name | age |
+----+--------------------------------+-------------+
| +I | jack | 10 |
来看一下这个Flink任务的Web UI界面
在这可以发现,此时这个任务中没有产生Changelog Normalize物化节点,因为我们在Paimon表中指定了changelog-producer=input
,所以这个Paimon表内部会自己存储Changelog数据。
此时到这个Paimon表的hdfs数据目录中查看一下:
[root@bigdata04 ~]# hdfs dfs -ls /paimon/default.db/changelog_input/bucket-0
Found 2 items
-rw-r--r-- 3 yehua supergroup 566 2028-12-11 11:14 /paimon/default.db/changelog_input/bucket-0/changelog-bc3740e4-6adf-4e94-9d4e-c1ece10ed114-0.orc
-rw-r--r-- 3 yehua supergroup 566 2028-12-11 11:14 /paimon/default.db/changelog_input/bucket-0/data-bc3740e4-6adf-4e94-9d4e-c1ece10ed114-1.orc
在这里可以发现里面有两个文件,一个以data开头的文件,里面存储的是数据自身。还有一个以changelog开头的文件,里面存储的是changelog变更数据。
修改FlinkDataStreamWriteToPaimonForInput
中的代码,继续执行,向Paimon表中写入-U
类型的数据。
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
//Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
Row.ofKind(RowKind.UPDATE_BEFORE, "jack", Int.box(10))//-U
//Row.ofKind(RowKind.UPDATE_AFTER, "jack", Int.box(11))//+U
//Row.ofKind(RowKind.DELETE, "jack", Int.box(11))//-D
)(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))
此时可以在FlinkDataStreamReadFromPaimonForInput
的控制台看到如下结果:
| -U | jack | 10 |
再修改FlinkDataStreamWriteToPaimonForInput
中的代码,继续执行,向Paimon表中写入+U
类型的数据。
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
//Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
//Row.ofKind(RowKind.UPDATE_BEFORE, "jack", Int.box(10))//-U
Row.ofKind(RowKind.UPDATE_AFTER, "jack", Int.box(11))//+U
//Row.ofKind(RowKind.DELETE, "jack", Int.box(11))//-D
)(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))
此时可以在FlinkDataStreamReadFromPaimonForInput
的控制台看到如下结果:
| +U | jack | 11 |
再修改FlinkDataStreamWriteToPaimonForInput
中的代码,继续执行,向Paimon表中写入-D
类型的数据。
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
//Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
//Row.ofKind(RowKind.UPDATE_BEFORE, "jack", Int.box(10))//-U
//Row.ofKind(RowKind.UPDATE_AFTER, "jack", Int.box(11))//+U
Row.ofKind(RowKind.DELETE, "jack", Int.box(11))//-D
)(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))
此时可以在FlinkDataStreamReadFromPaimonForInput
的控制台看到如下结果:
| -D | jack | 11 |
下面我们停止FlinkDataStreamReadFromPaimonForInput
这个实时读取任务。
停止了之后,修改一下代码,因为默认只会读取最新的数据快照
val execSql =
"""
|SELECT * FROM `changelog_input` -- 此时默认只能查到数据的最新值
|/*+ OPTIONS('scan.mode'='from-snapshot','scan.snapshot-id' = '1') */ -- 通过动态表选项来指定数据读取(扫描)模式,以及从哪里开始读取
|""".stripMargin
再重新运行FlinkDataStreamReadFromPaimonForNone
这个实时读取任务,可以看到这个结果:
+----+--------------------------------+-------------+
| op | name | age |
+----+--------------------------------+-------------+
| +I | jack | 10 |
| -U | jack | 10 |
| +U | jack | 11 |
| -D | jack | 11 |
注意:此时可以看到完整的数据变更情况,这是依赖于Paimon表中存储的changelog文件实现的,没有依赖于Flink任务中的Changelog Normalize
物化节点。
所以说,如果我们数据源中可以提供完整的changelog数据,那么建议给存储数据的Paimon表设置changelog-producer=input
,这样下游任务读取这个Paimon表的时候就可以直接从表中changelog文件里面获取变更数据了,不需要自己维护,效率比较高。
(3)Lookup
如果数据源中没有提供完整的 Changelog,并且我们也不想让下游任务在读取数据时通过Changelog Normalize物化节点来生成,那么这个时候我们可以考虑在Paimon表中配置 changelog-producer=lookup
。
这样可以通过Lookup(查找)的方式在向Paimon表中写入数据的时候生成 Changelog。
但是需要注意:Lookup这种方式目前处于实验阶段,还没有经过大量的生产环境验证。
看这个图,此时这个数据源中没有提供完整的Changelog,这个数据源可以是任意类型的数据源,数据源中可能只有+I、+U、-D
类型的数据,缺少了-U
类型的数据。
但是由于我们在Paimon表中设置了changelog-producer=lookup
,所以在通过SinkWriter
向Paimon表中写入数据的时候,底层会通过Lookup的方式查找表中已有的数据,自动生成Changelog File
,补全-U
类型的变更日志。
这样下游任务在读取这个Paimon表的时候就可以直接从表对应的Changelog File
中读取到完整的+I、-U、+U、-D
类型的数据了。
下面我们来具体演示一下建表语句中指定changelog-producer=lookup
时的效果
创建package:tech.xuwei.paimon.changelogproducer.lookup
基于创建Object:FlinkDataStreamWriteToPaimonForLookup
这个Object负责向Paimon表中模拟写入数据。
代码如下:
package tech.xuwei.paimon.changelogproducer.lookup
import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.api.common.typeinfo.Types
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.table.api.{DataTypes, Schema}
import org.apache.flink.table.connector.ChangelogMode
import org.apache.flink.types.{Row, RowKind}
/**
* 使用Flink DataStream API向Paimon表中写入数据
* Created by xuwei
*/
object FlinkDataStreamWriteToPaimonForLookup {
def main(args: Array[String]): Unit = {
//获取执行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
val tEnv = StreamTableEnvironment.create(env)
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
//Row.ofKind(RowKind.UPDATE_AFTER, "jack", Int.box(11))//+U
//Row.ofKind(RowKind.DELETE, "jack", Int.box(11))//-D
)(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))
//将DataStream转换为Table
val schema = Schema.newBuilder()
.column("name", DataTypes.STRING().notNull())//主键非空
.column("age", DataTypes.INT())
.primaryKey("name")//指定主键
.build()
val table = tEnv.fromChangelogStream(dataStream,schema,ChangelogMode.all())
//创建Paimon类型的Catalog
tEnv.executeSql(
"""
|CREATE CATALOG paimon_catalog WITH (
| 'type'='paimon',
| 'warehouse'='hdfs://bigdata01:9000/paimon'
|)
|""".stripMargin)
tEnv.executeSql("USE CATALOG paimon_catalog")
//注册临时表
tEnv.createTemporaryView("t1",table)
//创建Paimon类型的表
tEnv.executeSql(
"""
|-- 注意:这里的表名使用反引号进行转义,否则会导致SQL DDL语句解析失败。
|CREATE TABLE IF NOT EXISTS `changelog_lookup` (
| name STRING,
| age INT,
| PRIMARY KEY (name) NOT ENFORCED
|) WITH (
| 'changelog-producer' = 'lookup'
|)
|""".stripMargin)
//向Paimon表中写入数据
tEnv.executeSql(
"""
|INSERT INTO `changelog_lookup`
|SELECT name,age FROM t1
|""".stripMargin)
}
}
注意:在执行代码的时候通过修改env.fromElements(...)
中的注释来实现实时产生多种类型数据的效果。
接下来创建Object:FlinkDataStreamReadFromPaimonForLookup
这个Object负责从Paimon表中实时读取数据。
代码如下:
package tech.xuwei.paimon.changelogproducer.lookup
import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.configuration.{Configuration, RestOptions}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
/**
* 使用Flink DataStream API从Paimon表中读取数据
* Created by xuwei
*/
object FlinkDataStreamReadFromPaimonForLookup {
def main(args: Array[String]): Unit = {
val conf = new Configuration()
//指定WebUI界面的访问端口,默认就是8081
conf.setString(RestOptions.BIND_PORT,"8081")
//为了便于在本地通过页面观察任务执行情况,所以开启本地WebUI功能
val env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf)
env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
//禁用Chain,把多个算子拆分开单独执行,便于在开发和测试阶段观察,正式执行时不需要禁用Chain
env.disableOperatorChaining()
val tEnv = StreamTableEnvironment.create(env)
//创建Paimon类型的Catalog
tEnv.executeSql(
"""
|CREATE CATALOG paimon_catalog WITH (
| 'type'='paimon',
| 'warehouse'='hdfs://bigdata01:9000/paimon'
|)
|""".stripMargin)
tEnv.executeSql("USE CATALOG paimon_catalog")
//执行SQL查询,打印输出结果
val execSql =
"""
|SELECT * FROM `changelog_lookup` -- 此时默认只能查到数据的最新值
|-- /*+ OPTIONS('scan.mode'='from-snapshot','scan.snapshot-id' = '1') */ -- 通过动态表选项来指定数据读取(扫描)模式,以及从哪里开始读取
|""".stripMargin
val table = tEnv.sqlQuery(execSql)
table.execute().print()
}
}
接下来先运行FlinkDataStreamWriteToPaimonForLookup
向Paimon表中写入+I类型的数据。
再运行FlinkDataStreamReadFromPaimonForLookup
负责读取数据。
此时可以看到控制台输出如下结果:
+----+--------------------------------+-------------+
| op | name | age |
+----+--------------------------------+-------------+
| +I | jack | 10 |
来看一下这个Flink任务的Web UI界面
在这可以发现,此时这个任务中没有产生Changelog Normalize
物化节点,因为我们在Paimon表中指定了changelog-producer=lookup
,Changelog数据会在我们向Paimon表中写入数据的时候通过Lookup产生。
到这个Paimon表的hdfs数据目录里面查看一下:
[root@bigdata04 ~]# hdfs dfs -ls /paimon/default.db/changelog_lookup/bucket-0
Found 3 items
-rw-r--r-- 3 yehua supergroup 566 2028-12-11 12:01 /paimon/default.db/changelog_lookup/bucket-0/changelog-edb23cdc-09be-4437-b2ac-716e06e25c6d-1.orc
-rw-r--r-- 3 yehua supergroup 566 2028-12-11 12:01 /paimon/default.db/changelog_lookup/bucket-0/data-edb23cdc-09be-4437-b2ac-716e06e25c6d-0.orc
-rw-r--r-- 3 yehua supergroup 566 2028-12-11 12:01 /paimon/default.db/changelog_lookup/bucket-0/data-f07e00b5-a815-4d64-b8d6-1b8a2e64dab6-0.orc
在这可以发现,里面有1个changelog开头的文件,这个就是Lookup产生的。
修改FlinkDataStreamWriteToPaimonForLookup
中的代码,继续执行,向Paimon表中写入+U
类型的数据。
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
//Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
Row.ofKind(RowKind.UPDATE_AFTER, "jack", Int.box(11))//+U
//Row.ofKind(RowKind.DELETE, "jack", Int.box(11))//-D
)(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))
此时可以在FlinkDataStreamReadFromPaimonForLookup
的控制台看到如下结果:
| -U | jack | 10 |
| +U | jack | 11 |
注意:虽然我们向Paimon表中只写入了+U类型的数据,但是Lookup在生成changelog的时候会自动补全-U
类型的数据。
后面的-D
类型的数据就不再演示了,效果和前面是一样的。
所以说,Lookup这种方式属于一种折中方案,数据源里面无法提供完整的changelog变更日志,所以无法使用Input,但是我们还想摆脱昂贵的Changelog Normalize
物化节点,这个时候就可以考虑Lookup了。
最后还需要注意,Lookup这种方式虽然不需要产生Changelog Normalize
物化节点,但是他在生成Changelog的时候依然会消耗一部分资源的,因为它需要触发数据查找这个过程,只不过消耗的资源比Changelog Normalize
物化节点这种方式低一些。
(4)Full Compaction
如果你的数据源无法提供完整的changelog变更日志数据,并且你觉得Lookup这种方式还是比较消耗资源,此时可以考虑使用Full Compaction
这种方式,在创建Paimon表的时候指定changelog-producer=full-compaction
。
Full Compaction这种方式可以解耦写入数据和生成changelog这两个步骤。
也就是说我们会先把数据写入到Paimon表中,当表中的数据触发完全压缩之后,Paimon 会比较两次完全压缩之间的结果并生成差异作为changelog(变更日志),生成changelog的延迟会受到完全压缩频率的影响。
通过指定full-compaction.delta-commits
表属性,表示在增量提交Checkpoint后将会触发完全压缩。默认情况下值为1,所以每次提交Checkpoint都会进行完全压缩并生成changelog。
这样其实对生成changelog的延迟没有特别大的影响。
Full Compaction这种方式可以为任何类型的数据源生成完整的changelog变更日志。但是它没有Input方式的效率高,并且生成changelog的延迟可能会比较高。
不过Full Compaction这种方式解耦了写入数据和生成changelog这两个步骤,他的资源消耗比Lookup这种方式要低一些。
看这个图,此时这个数据源中没有提供完整的Changelog,这个数据源可以是任意类型的数据源,数据源中可能只有+I、+U、-D
的数据,缺少了-U
类型的数据。
但是由于我们在Paimon表中设置了changelog-producer=full-compaction
,所以Paimon会周期性的比较两次完全压缩(Full Compaction)之间的结果并生成差异作为changelog(变更日志),并且在Changelog中补全缺失的变更日志。
这样下游任务在读取这个Paimon表的时候就可以从表对应的Changelog File中读取到完整的+I、-U、+U、-D
类型的数据了。
下面我们来具体演示一下建表语句中指定changelog-producer=full-compaction
时的效果
创建package:tech.xuwei.paimon.changelogproducer.fullcompaction
创建object:FlinkDataStreamWriteToPaimonForFullcompaction
这个Object负责向Paimon表中模拟写入数据。
代码如下:
package tech.xuwei.paimon.changelogproducer.fullcompaction
import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.api.common.typeinfo.Types
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.table.api.{DataTypes, Schema}
import org.apache.flink.table.connector.ChangelogMode
import org.apache.flink.types.{Row, RowKind}
/**
* 使用Flink DataStream API向Paimon表中写入数据
* Created by xuwei
*/
object FlinkDataStreamWriteToPaimonForFullcompaction {
def main(args: Array[String]): Unit = {
//获取执行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
val tEnv = StreamTableEnvironment.create(env)
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
//Row.ofKind(RowKind.UPDATE_AFTER, "jack", Int.box(11))//+U
//Row.ofKind(RowKind.DELETE, "jack", Int.box(11))//-D
)(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))
//将DataStream转换为Table
val schema = Schema.newBuilder()
.column("name", DataTypes.STRING().notNull())//主键非空
.column("age", DataTypes.INT())
.primaryKey("name")//指定主键
.build()
val table = tEnv.fromChangelogStream(dataStream,schema,ChangelogMode.all())
//创建Paimon类型的Catalog
tEnv.executeSql(
"""
|CREATE CATALOG paimon_catalog WITH (
| 'type'='paimon',
| 'warehouse'='hdfs://bigdata01:9000/paimon'
|)
|""".stripMargin)
tEnv.executeSql("USE CATALOG paimon_catalog")
//注册临时表
tEnv.createTemporaryView("t1",table)
//创建Paimon类型的表
tEnv.executeSql(
"""
|-- 注意:这里的表名使用反引号进行转义,否则会导致SQL DDL语句解析失败。
|CREATE TABLE IF NOT EXISTS `changelog_fullcompaction` (
| name STRING,
| age INT,
| PRIMARY KEY (name) NOT ENFORCED
|) WITH (
| 'changelog-producer' = 'full-compaction',
| 'full-compaction.delta-commits' = '1'
|)
|""".stripMargin)
//向Paimon表中写入数据
tEnv.executeSql(
"""
|INSERT INTO `changelog_fullcompaction`
|SELECT name,age FROM t1
|""".stripMargin)
}
}
注意:在执行代码的时候通过修改env.fromElements(...)
中的注释来实现实时产生多种类型数据的效果。
接下来创建Object:FlinkDataStreamReadFromPaimonForFullcompaction
这个Object负责从Paimon表中实时读取数据。
代码如下:
package tech.xuwei.paimon.changelogproducer.fullcompaction
import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.configuration.{Configuration, RestOptions}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
/**
* 使用Flink DataStream API从Paimon表中读取数据
* Created by xuwei
*/
object FlinkDataStreamReadFromPaimonForFullcompaction {
def main(args: Array[String]): Unit = {
val conf = new Configuration()
//指定WebUI界面的访问端口,默认就是8081
conf.setString(RestOptions.BIND_PORT,"8081")
//为了便于在本地通过页面观察任务执行情况,所以开启本地WebUI功能
val env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf)
env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
//禁用Chain,把多个算子拆分开单独执行,便于在开发和测试阶段观察,正式执行时不需要禁用Chain
env.disableOperatorChaining()
val tEnv = StreamTableEnvironment.create(env)
//创建Paimon类型的Catalog
tEnv.executeSql(
"""
|CREATE CATALOG paimon_catalog WITH (
| 'type'='paimon',
| 'warehouse'='hdfs://bigdata01:9000/paimon'
|)
|""".stripMargin)
tEnv.executeSql("USE CATALOG paimon_catalog")
//执行SQL查询,打印输出结果
val execSql =
"""
|SELECT * FROM `changelog_fullcompaction` -- 此时默认只能查到数据的最新值
|--/*+ OPTIONS('scan.mode'='from-snapshot','scan.snapshot-id' = '1') */ -- 通过动态表选项来指定数据读取(扫描)模式,以及从哪里开始读取
|""".stripMargin
val table = tEnv.sqlQuery(execSql)
table.execute().print()
}
}
接下来先运行FlinkDataStreamWriteToPaimonForFullcompaction
向Paimon表中写入+I
类型的数据。
再运行FlinkDataStreamReadFromPaimonForFullcompaction
负责读取数据。
此时可以看到控制台输出如下结果:
+----+--------------------------------+-------------+
| op | name | age |
+----+--------------------------------+-------------+
| +I | jack | 10 |
来看一下这个Flink任务的Web UI界面
在这可以发现,此时这个任务中没有产生Changelog Normalize
物化节点,其实只有我们把Changelog Producer
设置为none
的时候Flink任务才会产生Changelog Normalize
物化节点。
那此时我们到这个Paimon表的hdfs数据目录里面查看一下有没有产生changelog文件:
[root@bigdata04 ~]# hdfs dfs -ls /paimon/default.db/changelog_fullcompaction/bucket-0
Found 3 items
-rw-r--r-- 3 yehua supergroup 566 2028-12-11 16:20 /paimon/default.db/changelog_fullcompaction/bucket-0/changelog-264c4b74-10dd-493d-95e0-8f5760e90dc8-1.orc
-rw-r--r-- 3 yehua supergroup 566 2028-12-11 16:20 /paimon/default.db/changelog_fullcompaction/bucket-0/data-264c4b74-10dd-493d-95e0-8f5760e90dc8-0.orc
-rw-r--r-- 3 yehua supergroup 566 2028-12-11 16:20 /paimon/default.db/changelog_fullcompaction/bucket-0/data-d7adcc2a-804a-4a13-876a-fb77dc4a0952-0.orc
在这可以发现,里面有1个changelog开头的文件,这个就是Full Compaction这种方式产生的。
修改FlinkDataStreamWriteToPaimonForFullcompaction
中的代码,继续执行,向Paimon表中写入+U
类型的数据。
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
//Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
Row.ofKind(RowKind.UPDATE_AFTER, "jack", Int.box(11))//+U
//Row.ofKind(RowKind.DELETE, "jack", Int.box(11))//-D
)(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))
此时可以在FlinkDataStreamReadFromPaimonForFullcompaction
的控制台看到如下结果:
| -U | jack | 10 |
| +U | jack | 11 |
注意:这块可能会有一些延迟,具体的延迟程度要看完全压缩触发的频率,我们前面指定了full-compaction.delta-commits
的值为1,表示在每次提交Checkpoint都会进行完全压缩并生成changelog,所以目前的延迟是比较低的。
但是我们需要注意:完全压缩是一个资源密集型的过程,会消耗一定的CPU
和磁盘IO
,因此过于频繁的完全压缩可能会导致写入速度变慢,所以这块也需要均衡考虑。
后面的-D
类型的数据就不再演示了,效果和前面是一样的。
(5)总结
咱们前面一共讲了4种Changelog Producer。
- 在实际工作中None这种方式基本上是不使用的,成本太高。
- 如果数据源是完整的CDC数据,直接使用Input这种方式即可,成本最低,效率最高。
- 如果数据源中无法提供完整的Changelog,此时可以考虑使用Lookup和Full Compaction。
- 如果你觉得使用Lookup来实时生成 Changelog 成本过大,可以考虑通过Full Compaction和对应较大的延迟,以非常低的成本生成 Changelog。
3.2.1.3 Merge Engines
Merge Engines:可以翻译为合并引擎。
针对多条相同主键的数据,Paimon主键表收到之后,应该如何进行合并处理?
针对这块的处理逻辑,Paimon提供了参数merge-engine
,通过这个参数来指定如何合并数据。
merge-engine
一共支持3种取值:
- deduplicate:默认值,表示去重,也就是说主键表默认只会保留相同主键最新的数据。
- partial-update:表示局部更新,通过相同主键的多条数据来更新不同字段的值。
- aggregation:表示聚合,可以对相同主键的多条数据根据指定的字段进行聚合。
下面我们来详细分析一下这几种合并引擎。
(1)Deduplicate
如果我们在Paimon中创建主键表时不指定merge-engine
参数,那么默认值就是deduplicate
。
此时只保留主键最新的数据,之前表中相同主键的数据会被丢弃。
注意:如果主键最新的数据是-D
类型的,那么这个主键的所有数据都会被删除。
下面我们来具体演示一下。
核心的思路是这样的:我们通过数据源模拟产生2条相同主键的+I类型的数据,依次写入到主键表中,最终发现主键表中只会保留最新的那一条数据。
创建package:tech.xuwei.paimon.mergeengine.deduplicate
创建object:FlinkDataStreamWriteToPaimonForDeduplicate
这个Object负责向Paimon表中模拟写入数据。
代码如下:
package tech.xuwei.paimon.mergeengine.deduplicate
import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.api.common.typeinfo.Types
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.table.api.{DataTypes, Schema}
import org.apache.flink.table.connector.ChangelogMode
import org.apache.flink.types.{Row, RowKind}
/**
* 使用Flink DataStream API向Paimon表中写入数据
* Created by xuwei
*/
object FlinkDataStreamWriteToPaimonForDeduplicate {
def main(args: Array[String]): Unit = {
//获取执行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
val tEnv = StreamTableEnvironment.create(env)
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
//Row.ofKind(RowKind.INSERT, "jack", Int.box(12))//+I
)(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))
//将DataStream转换为Table
val schema = Schema.newBuilder()
.column("name", DataTypes.STRING().notNull())//主键非空
.column("age", DataTypes.INT())
.primaryKey("name")//指定主键
.build()
val table = tEnv.fromChangelogStream(dataStream,schema,ChangelogMode.all())
//创建Paimon类型的Catalog
tEnv.executeSql(
"""
|CREATE CATALOG paimon_catalog WITH (
| 'type'='paimon',
| 'warehouse'='hdfs://bigdata01:9000/paimon'
|)
|""".stripMargin)
tEnv.executeSql("USE CATALOG paimon_catalog")
//注册临时表
tEnv.createTemporaryView("t1",table)
//创建Paimon类型的表
tEnv.executeSql(
"""
|-- 注意:这里的表名使用反引号进行转义,否则会导致SQL DDL语句解析失败。
|CREATE TABLE IF NOT EXISTS `merge_engine_deduplicate` (
| name STRING,
| age INT,
| PRIMARY KEY (name) NOT ENFORCED
|) WITH (
| 'merge-engine' = 'deduplicate' -- 注意:值为deduplicate时这一行配置可以省略不写
|)
|""".stripMargin)
//向Paimon表中写入数据
tEnv.executeSql(
"""
|INSERT INTO `merge_engine_deduplicate`
|SELECT name,age FROM t1
|""".stripMargin)
}
}
注意:在执行代码的时候通过修改env.fromElements(...)
中的注释来实现实时产生多条+I
类型数据的效果。
接下来创建Object:FlinkDataStreamReadFromPaimonForDeduplicate
这个Object负责从Paimon表中实时读取数据。
代码如下:
package tech.xuwei.paimon.mergeengine.deduplicate
import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.configuration.{Configuration, RestOptions}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
/**
* 使用Flink DataStream API从Paimon表中读取数据
* Created by xuwei
*/
object FlinkDataStreamReadFromPaimonForDeduplicate {
def main(args: Array[String]): Unit = {
val conf = new Configuration()
//指定WebUI界面的访问端口,默认就是8081
conf.setString(RestOptions.BIND_PORT,"8081")
//为了便于在本地通过页面观察任务执行情况,所以开启本地WebUI功能
val env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf)
env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
//禁用Chain,把多个算子拆分开单独执行,便于在开发和测试阶段观察,正式执行时不需要禁用Chain
env.disableOperatorChaining()
val tEnv = StreamTableEnvironment.create(env)
//创建Paimon类型的Catalog
tEnv.executeSql(
"""
|CREATE CATALOG paimon_catalog WITH (
| 'type'='paimon',
| 'warehouse'='hdfs://bigdata01:9000/paimon'
|)
|""".stripMargin)
tEnv.executeSql("USE CATALOG paimon_catalog")
//执行SQL查询,打印输出结果
val execSql =
"""
|SELECT * FROM `merge_engine_deduplicate` -- 此时默认只能查到数据的最新值
|-- /*+ OPTIONS('scan.mode'='from-snapshot','scan.snapshot-id' = '1') */ -- 通过动态表选项来指定数据读取(扫描)模式,以及从哪里开始读取
|""".stripMargin
val table = tEnv.sqlQuery(execSql)
table.execute().print()
}
}
接下来先运行FlinkDataStreamWriteToPaimonForDeduplicate
向Paimon表中写入一条+I
类型的数据。
再运行FlinkDataStreamReadFromPaimonForDeduplicate
负责读取数据。
此时可以看到控制台输出如下结果:
+----+--------------------------------+-------------+
| op | name | age |
+----+--------------------------------+-------------+
| +I | jack | 10 |
修改FlinkDataStreamWriteToPaimonForDeduplicate
中的代码,继续执行,向Paimon表中写入第2条+I
类型的数据。
注意:这两条数据的主键是相同的。
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
//Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
//Row.ofKind(RowKind.INSERT, "jack", Int.box(12))//+I
)(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))
此时可以在FlinkDataStreamReadFromPaimonForDeduplicate
的控制台看到如下结果:
| -U | jack | 10 |
| +U | jack | 12 |
从这可以看出来,之前的数据被删除了,新增了一条年龄为12的数据。
所以deduplicate
这种表引擎只会保留相同主键最新的数据。
(2)Partial Update
如果我们在Paimon中创建主键表时指定merge-engine
的值为partial-update
,那么就可以实现局部更新数据字段的效果。
举个例子:使用多个 Flink流任务去更新同一张表,每个流任务只更新一张表的部分列,最终实现一行完整数据的更新。对于需要构建宽表的业务场景,使用partial-update
是非常合适的,并且构建宽表的操作也比较简单。
注意:这里所说的多个Flink 流任务并不是指多个Flink Job并发写同一张Paimon表,这样比较麻烦。目前推荐的是将多个Flink流任务
UNION ALL
起来,最终启动一个Flink Job 向Paimon表中写入数据。
还有一点需要注意的是:partial-update
这种表引擎不支持流读,需要结合Lookup
或者full-compaction
变更日志生产者一起使用才可以支持流读。
同时由于partial-update
不能接收和处理DELETE
消息,为了避免接收到DELETE消息报错,需要在建表语句中配置partial-update.ignore-delete= true
表示忽略 DELETE消息。
下面我们来具体演示一下:
核心思路是这样的,准备模拟产生3条+I类型的数据,数据内容大致是这样的。
<jack, 10, 175, null>
<jack, null, null, beijing>
<jack, 11, null, null>
将这3条数据写入到Paimon主键表之后,会得到什么结果呢?
结果是这样的:<jack, 11, 175, beijing>
为什么呢?因为null
字段不会覆盖更新字段的值。
创建package:tech.xuwei.paimon.mergeengine.partialupdate
创建object:FlinkDataStreamWriteToPaimonForPartialupdate
这个Object负责向Paimon表中模拟写入数据。
代码如下:
package tech.xuwei.paimon.mergeengine.partialupdate
import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.api.common.typeinfo.Types
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.table.api.{DataTypes, Schema}
import org.apache.flink.table.connector.ChangelogMode
import org.apache.flink.types.{Row, RowKind}
/**
* 使用Flink DataStream API向Paimon表中写入数据
* Created by xuwei
*/
object FlinkDataStreamWriteToPaimonForPartialupdate {
def main(args: Array[String]): Unit = {
//获取执行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
val tEnv = StreamTableEnvironment.create(env)
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
Row.ofKind(RowKind.INSERT, "jack", Int.box(10),Int.box(175),null)//+I
//Row.ofKind(RowKind.INSERT, "jack", null,null,"beijing")//+I
//Row.ofKind(RowKind.INSERT, "jack", Int.box(11),null,null)//+I
)(Types.ROW_NAMED(Array("name", "age", "height", "city"),Types.STRING,Types.INT,Types.INT,Types.STRING))
//将DataStream转换为Table
val schema = Schema.newBuilder()
.column("name", DataTypes.STRING().notNull())//主键非空
.column("age", DataTypes.INT())
.column("height", DataTypes.INT())
.column("city", DataTypes.STRING())
.primaryKey("name")//指定主键
.build()
val table = tEnv.fromChangelogStream(dataStream,schema,ChangelogMode.all())
//创建Paimon类型的Catalog
tEnv.executeSql(
"""
|CREATE CATALOG paimon_catalog WITH (
| 'type'='paimon',
| 'warehouse'='hdfs://bigdata01:9000/paimon'
|)
|""".stripMargin)
tEnv.executeSql("USE CATALOG paimon_catalog")
//注册临时表
tEnv.createTemporaryView("t1",table)
//创建Paimon类型的表
tEnv.executeSql(
"""
|-- 注意:这里的表名使用反引号进行转义,否则会导致SQL DDL语句解析失败。
|CREATE TABLE IF NOT EXISTS `merge_engine_partialupdate` (
| name STRING,
| age INT,
| height INT,
| city STRING,
| PRIMARY KEY (name) NOT ENFORCED
|) WITH (
| 'merge-engine' = 'partial-update',
| 'partial-update.ignore-delete' = 'true'
|)
|""".stripMargin)
//向Paimon表中写入数据
tEnv.executeSql(
"""
|INSERT INTO `merge_engine_partialupdate`
|SELECT name,age,height,city FROM t1
|""".stripMargin)
}
}
注意:在执行代码的时候通过修改env.fromElements(...)
中的注释来实现实时产生多条+I
类型数据的效果。
接下来创建Object:FlinkDataStreamReadFromPaimonForPartialupdate
这个Object负责从Paimon表中实时读取数据。
代码如下:
package tech.xuwei.paimon.mergeengine.partialupdate
import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.configuration.{Configuration, RestOptions}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
/**
* 使用Flink DataStream API从Paimon表中读取数据
* Created by xuwei
*/
object FlinkDataStreamReadFromPaimonForPartialupdate {
def main(args: Array[String]): Unit = {
val conf = new Configuration()
//指定WebUI界面的访问端口,默认就是8081
conf.setString(RestOptions.BIND_PORT,"8081")
//为了便于在本地通过页面观察任务执行情况,所以开启本地WebUI功能
val env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf)
env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
//禁用Chain,把多个算子拆分开单独执行,便于在开发和测试阶段观察,正式执行时不需要禁用Chain
env.disableOperatorChaining()
val tEnv = StreamTableEnvironment.create(env)
//创建Paimon类型的Catalog
tEnv.executeSql(
"""
|CREATE CATALOG paimon_catalog WITH (
| 'type'='paimon',
| 'warehouse'='hdfs://bigdata01:9000/paimon'
|)
|""".stripMargin)
tEnv.executeSql("USE CATALOG paimon_catalog")
//执行SQL查询,打印输出结果
val execSql =
"""
|SELECT * FROM `merge_engine_partialupdate` -- 此时默认只能查到数据的最新值
|-- /*+ OPTIONS('scan.mode'='from-snapshot','scan.snapshot-id' = '1') */ -- 通过动态表选项来指定数据读取(扫描)模式,以及从哪里开始读取
|""".stripMargin
val table = tEnv.sqlQuery(execSql)
table.execute().print()
}
}
接下来先运行FlinkDataStreamWriteToPaimonFoPartialupdate
向Paimon表中写入一条+I
类型的数据。
再运行FlinkDataStreamReadFromPaimonForPartialupdate
负责读取数据。
结果发现代码报错了,错误日志如下:
Exception in thread "main" java.lang.RuntimeException: Partial update streaming reading is not supported. You can use 'lookup' or 'full-compaction' changelog producer to support streaming reading.
at org.apache.paimon.flink.utils.TableScanUtils.streamingReadingValidate(TableScanUtils.java:45)
at org.apache.paimon.flink.source.FlinkSourceBuilder.build(FlinkSourceBuilder.java:170)
at org.apache.paimon.flink.source.AbstractDataTableSource.configureSource(AbstractDataTableSource.java:233)
at org.apache.paimon.flink.source.AbstractDataTableSource.lambda$getScanRuntimeProvider$0(AbstractDataTableSource.java:210)
at org.apache.paimon.flink.PaimonDataStreamScanProvider.produceDataStream(PaimonDataStreamScanProvider.java:44)
通过错误日志可以看出来,Partial update
表引擎默认不支持流读,我们现在在代码中指定了运行模式为STREAMING
,就是流式读取的意思。
我们可以在表中指定使用lookup
或者full-compaction
变更日志生产者来支持流读。
注意:如果不需要流读的话,可以在代码中指定运行模式为
BATCH
,此时执行是不报错的。
如果想要使用流读,就需要在建表语中修改变更日志生产者了。
//创建Paimon类型的表
tEnv.executeSql(
"""
|-- 注意:这里的表名使用反引号进行转义,否则会导致SQL DDL语句解析失败。
|CREATE TABLE IF NOT EXISTS `merge_engine_partialupdate` (
| name STRING,
| age INT,
| height INT,
| city STRING,
| PRIMARY KEY (name) NOT ENFORCED
|) WITH (
| 'changelog-producer' = 'lookup',-- 注意:partial-update表引擎需要和lookup或者full-compaction一起使用时才支持流读
| 'merge-engine' = 'partial-update',
| 'partial-update.ignore-delete' = 'true'
|)
|""".stripMargin)
merge_engine_partialupdate
这个表我们已经创建过了,所以我们需要删除这个表。其实有一种快捷方式,我们直接到HDFS中删除这个表对应的目录其实就可以了。
接下来继续重新运行FlinkDataStreamWriteToPaimonForPartialupdate
向Paimon表中写入一条+I
类型的数据。
再运行FlinkDataStreamReadFromPaimonForPartialupdate
负责读取数据。
此时可以看到控制台输出如下结果:
+----+--------------------------------+-------------+-------------+--------------------------------+
| op | name | age | height | city |
+----+--------------------------------+-------------+-------------+--------------------------------+
| +I | jack | 10 | 175 | <NULL> |
注意:此时city
字段的值为null
。
修改FlinkDataStreamWriteToPaimonForDeduplicate
中的代码,继续执行,向Paimon表中写入第2条+I
类型的数据。
注意:这条数据的主键和前面的数据是相同的。
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
//Row.ofKind(RowKind.INSERT, "jack", Int.box(10),Int.box(175),null)//+I
Row.ofKind(RowKind.INSERT, "jack", null,null,"beijing")//+I
//Row.ofKind(RowKind.INSERT, "jack", Int.box(11),null,null)//+I
)(Types.ROW_NAMED(Array("name", "age", "height", "city"),Types.STRING,Types.INT,Types.INT,Types.STRING))
此时可以在FlinkDataStreamReadFromPaimonForPartialupdate
的控制台看到如下结果:
| -U | jack | 10 | 175 | <NULL> |
| +U | jack | 10 | 175 | beijing |
在这里看到最新数据中的city
字段有值了,其实刚才这一条数据相当于局部更新了city
字段的值。
注意:其他几个为null的字段不会覆盖之前的字段的值,那也就意味着,如果我们指定了字段的值为null,说明不需要覆盖更新这个字段的值。
修改FlinkDataStreamWriteToPaimonForDeduplicate
中的代码,继续执行,向Paimon表中写入第3条+I
类型的数据。
注意:这条数据的主键和前面的数据是相同的。
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
//Row.ofKind(RowKind.INSERT, "jack", Int.box(10),Int.box(175),null)//+I
//Row.ofKind(RowKind.INSERT, "jack", null,null,"beijing")//+I
Row.ofKind(RowKind.INSERT, "jack", Int.box(11),null,null)//+I
)(Types.ROW_NAMED(Array("name", "age", "height", "city"),Types.STRING,Types.INT,Types.INT,Types.STRING))
此时可以在FlinkDataStreamReadFromPaimonForPartialupdate
的控制台看到如下结果:
| -U | jack | 10 | 175 | beijing |
| +U | jack | 11 | 175 | beijing |
在这里可以发现,age
字段的值被修改为了11
,其他字段的值没变。
这样我们就实现了局部更新数据字段的效果,这种业务场景和构建宽表的场景是非常类似的,所以Partial Update
这个表引擎适合用于构建宽表的业务场景。
(3)Aggregation
如果我们在Paimon中创建主键表时指定merge-engine
的值为aggregation
,那么就可以实现指定列数据预聚合的效果了。
此时可以通过聚合函数做一些预聚合,除了主键以外的每个列都可以指定一个聚合函数,相同主键的数据就可以按照列上指定的聚合函数进行相应的预聚合;
常见的聚合函数包括sum、max、min
等。
如果没有给列指定聚合函数,则默认使用last-non-null-value
这个聚合函数,此时表示只保存最新非空值,空值不会覆盖。
注意:除了sum
这个聚合函数,其他的聚合函数都不支持读取回撤数据,为了避免接收到DELETE和UPDATE BEFORE类型的消息报错,我们需要在建表语句中给指定字段进行配置fields.${field_name}.ignore-retract = true
忽略回撤数据。
还有一点需要注意:Aggregation表引擎也需要和Lookup
或者full-compaction
变更日志生产者一起使用。
下面我们来具体演示一下:
核心思路是这样的,准备模拟产生2条+I类型的数据,数据内容大致是这样的。
<1, 3.4, 10>
<1, 2.12, 15>
解释:<商品id(id),商品价格(price),商品数量(count)>
针对商品价格,我们希望统计最大值,针对商品数量,我们希望统计累加的和。
将这2条数据写入到Paimon主键表之后,会得到什么结果呢?
结果是这样的:<1,3.4,25>
创建package:tech.xuwei.paimon.mergeengine.Aggregation
创建object:FlinkDataStreamWriteToPaimonForAggregation
这个Object负责向Paimon表中模拟写入数据。
代码如下:
package tech.xuwei.paimon.mergeengine.aggregation
import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.api.common.typeinfo.Types
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.table.api.{DataTypes, Schema}
import org.apache.flink.table.connector.ChangelogMode
import org.apache.flink.types.{Row, RowKind}
/**
* 使用Flink DataStream API向Paimon表中写入数据
* Created by xuwei
*/
object FlinkDataStreamWriteToPaimonForAggregation {
def main(args: Array[String]): Unit = {
//获取执行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
val tEnv = StreamTableEnvironment.create(env)
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
Row.ofKind(RowKind.INSERT, "1", Double.box(3.4), Int.box(10))//+I
//Row.ofKind(RowKind.INSERT, "1", Double.box(2.12), Int.box(15))//+I
)(Types.ROW_NAMED(Array("id", "price", "count"),Types.STRING,Types.DOUBLE,Types.INT))
//将DataStream转换为Table
val schema = Schema.newBuilder()
.column("id", DataTypes.STRING().notNull())//主键非空
.column("price", DataTypes.DOUBLE())
.column("count", DataTypes.INT())
.primaryKey("id")//指定主键
.build()
val table = tEnv.fromChangelogStream(dataStream,schema,ChangelogMode.all())
//创建Paimon类型的Catalog
tEnv.executeSql(
"""
|CREATE CATALOG paimon_catalog WITH (
| 'type'='paimon',
| 'warehouse'='hdfs://bigdata01:9000/paimon'
|)
|""".stripMargin)
tEnv.executeSql("USE CATALOG paimon_catalog")
//注册临时表
tEnv.createTemporaryView("t1",table)
//创建Paimon类型的表
tEnv.executeSql(
"""
|-- 注意:这里的表名使用反引号进行转义,否则会导致SQL DDL语句解析失败。
|CREATE TABLE IF NOT EXISTS `merge_engine_aggregation` (
| id STRING,
| price DOUBLE,
| `count` INT,
| PRIMARY KEY (id) NOT ENFORCED
|) WITH (
| 'changelog-producer' = 'lookup',-- 注意:aggregation表引擎需要和lookup或者full-compaction一起使用时才支持流读
| 'merge-engine' = 'aggregation',
| 'fields.price.aggregate-function' = 'max',
| 'fields.count.aggregate-function' = 'sum',
| 'fields.price.ignore-retract' = 'true'
|)
|""".stripMargin)
//向Paimon表中写入数据
tEnv.executeSql(
"""
|INSERT INTO `merge_engine_aggregation`
|SELECT id,price,`count` FROM t1
|""".stripMargin)
}
}
注意:count字段需要加反引号转义,否则SQL会报错。
注意:在执行代码的时候通过修改env.fromElements(...)
中的注释来实现实时产生多条+I
类型数据的效果。
接下来创建Object:FlinkDataStreamReadFromPaimonForAggregation
这个Object负责从Paimon表中实时读取数据。
代码如下:
package tech.xuwei.paimon.mergeengine.aggregation
import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.configuration.{Configuration, RestOptions}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
/**
* 使用Flink DataStream API从Paimon表中读取数据
* Created by xuwei
*/
object FlinkDataStreamReadFromPaimonForAggregation {
def main(args: Array[String]): Unit = {
val conf = new Configuration()
//指定WebUI界面的访问端口,默认就是8081
conf.setString(RestOptions.BIND_PORT,"8081")
//为了便于在本地通过页面观察任务执行情况,所以开启本地WebUI功能
val env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf)
env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
//禁用Chain,把多个算子拆分开单独执行,便于在开发和测试阶段观察,正式执行时不需要禁用Chain
env.disableOperatorChaining()
val tEnv = StreamTableEnvironment.create(env)
//创建Paimon类型的Catalog
tEnv.executeSql(
"""
|CREATE CATALOG paimon_catalog WITH (
| 'type'='paimon',
| 'warehouse'='hdfs://bigdata01:9000/paimon'
|)
|""".stripMargin)
tEnv.executeSql("USE CATALOG paimon_catalog")
//执行SQL查询,打印输出结果
val execSql =
"""
|SELECT * FROM `merge_engine_aggregation` -- 此时默认只能查到数据的最新值
|-- /*+ OPTIONS('scan.mode'='from-snapshot','scan.snapshot-id' = '1') */ -- 通过动态表选项来指定数据读取(扫描)模式,以及从哪里开始读取
|""".stripMargin
val table = tEnv.sqlQuery(execSql)
table.execute().print()
}
}
接下来首先运行FlinkDataStreamWriteToPaimonForAggregation
向Paimon表中写入一条+I类型的数据。
再运行FlinkDataStreamReadFromPaimonForAggregation
负责读取数据。
此时可以看到控制台输出如下结果:
+----+--------------------------------+--------------------------------+-------------+
| op | id | price | count |
+----+--------------------------------+--------------------------------+-------------+
| +I | 1 | 3.4 | 10 |
修改FlinkDataStreamWriteToPaimonForAggregation
中的代码,继续执行,向Paimon表中写入第2条+I
类型的数据。
注意:这条数据的主键和前面的数据是相同的。
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
//Row.ofKind(RowKind.INSERT, "1", Double.box(3.4), Int.box(10))//+I
Row.ofKind(RowKind.INSERT, "1", Double.box(2.12), Int.box(15))//+I
)(Types.ROW_NAMED(Array("id", "price", "count"),Types.STRING,Types.DOUBLE,Types.INT))
此时可以在FlinkDataStreamReadFromPaimonForPartialupdate
的控制台看到如下结果:
| -U | 1 | 3.4 | 10 |
| +U | 1 | 3.4 | 25 |
此时可以发现,price还是3.4,因为price字段是取的最大值;count字段的值变成了25,因为count字段取的是和。
通过Aggregation这个表引擎,可以实现数据写入的时候直接预聚合,可以简化数据聚合统计这块的操作。
3.2.1.4 Sequence Field
默认情况下,Paimon中的主键表会根据数据的输入顺序确定数据的合并顺序,最后输入的数据会在最后进行合并,但是在分布式计算程序中,肯定会存在数据乱序问题的,这样可能会导致数据合并的结果并不是我们期望的。
在Flink中,针对数据乱序问题是通过watermark解决的。
在Paimon的主键表中,可以通过Sequence Field(序列字段)来解决。
针对咱们前面讲到的使用Partial Update表引擎构建宽表的案例,如果数据的写入顺序出现了错乱,肯定会导致结果异常的。
针对这个需求,这3条数据是这样的,默认情况下这3条数据是按照时间先后顺序产生的
1:<jack, 10, 175, null>
2:<jack, null, null, 'beijing'>
3:<jack, 11, null, null>
如果他们按照1、2、3的顺序写入Paimon主键表中,那么可以得到我们期望的结果:<jack, 11, 175, 'beijing'>
如果先写入了第3条数据,再写入1、2条数据,那么结果就是这样的了:<jack, 10, 175, 'beijing'>
,这样就不是我们期望看到的结果了。
所以,针对这种问题,可以使用Sequence Field
来解决。
我们可以在建表语句中通过参数sequence.field
来指定序列字段,一般建议使用时间字段作为序列字段。
这样就算顺序乱了,也不影响最终合并的结果,因为底层在合并数据的时候会把最大值的数据作为最后合并的结果。
下面我们来具体演示一下:
创建package:tech.xuwei.paimon.sequencefield
创建object:FlinkDataStreamWriteToPaimonForSequencefield
代码中需要用到这几条数据的时间戳:
2023-10-01 10:01:00 1696125660000
2023-10-01 10:01:01 1696125661000
2023-10-01 10:01:02 1696125662000
这个Object负责向Paimon表中模拟写入数据。
代码如下:
package tech.xuwei.paimon.sequencefield
import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.api.common.typeinfo.Types
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.table.api.{DataTypes, Schema}
import org.apache.flink.table.connector.ChangelogMode
import org.apache.flink.types.{Row, RowKind}
/**
* 使用Flink DataStream API向Paimon表中写入数据
* Created by xuwei
*/
object FlinkDataStreamWriteToPaimonForSequencefield {
def main(args: Array[String]): Unit = {
//获取执行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
val tEnv = StreamTableEnvironment.create(env)
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
Row.ofKind(RowKind.INSERT, "jack", Int.box(11),null,null,Long.box(1696125662000L))//+I
//Row.ofKind(RowKind.INSERT, "jack", Int.box(10),Int.box(175),null,Long.box(1696125660000L))//+I
//Row.ofKind(RowKind.INSERT, "jack", null,null,"beijing",Long.box(1696125661000L))//+I
)(Types.ROW_NAMED(Array("name", "age", "height", "city","ts_millis"),Types.STRING,Types.INT,Types.INT,Types.STRING,Types.LONG))
//将DataStream转换为Table
val schema = Schema.newBuilder()
.column("name", DataTypes.STRING().notNull())//主键非空
.column("age", DataTypes.INT())
.column("height", DataTypes.INT())
.column("city", DataTypes.STRING())
.column("ts_millis", DataTypes.BIGINT())
.primaryKey("name")//指定主键
.build()
val table = tEnv.fromChangelogStream(dataStream,schema,ChangelogMode.all())
//创建Paimon类型的Catalog
tEnv.executeSql(
"""
|CREATE CATALOG paimon_catalog WITH (
| 'type'='paimon',
| 'warehouse'='hdfs://bigdata01:9000/paimon'
|)
|""".stripMargin)
tEnv.executeSql("USE CATALOG paimon_catalog")
//注册临时表
tEnv.createTemporaryView("t1",table)
//创建Paimon类型的表
tEnv.executeSql(
"""
|-- 注意:这里的表名使用反引号进行转义,否则会导致SQL DDL语句解析失败。
|CREATE TABLE IF NOT EXISTS `sequence_field` (
| name STRING,
| age INT,
| height INT,
| city STRING,
| ts_millis BIGINT,
| PRIMARY KEY (name) NOT ENFORCED
|) WITH (
| 'changelog-producer' = 'lookup',-- 注意:partial-update表引擎需要和lookup或者full-compaction一起使用时才支持流读
| 'merge-engine' = 'partial-update',
| 'partial-update.ignore-delete' = 'true',
| 'sequence.field' = 'ts_millis',
| 'sequence.auto-padding' = 'millis-to-micro' -- 将序列字段的精度补足到微妙
|)
|""".stripMargin)
//向Paimon表中写入数据
tEnv.executeSql(
"""
|INSERT INTO `sequence_field`
|SELECT name,age,height,city,ts_millis FROM t1
|""".stripMargin)
}
}
注意:在执行代码的时候通过修改env.fromElements(...)
中的注释来实现实时产生多条+I
类型数据的效果。
接下来创建Object:FlinkDataStreamReadFromPaimonForSequencefield
这个Object负责从Paimon表中实时读取数据。
代码如下:
package tech.xuwei.paimon.sequencefield
import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.configuration.{Configuration, RestOptions}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
/**
* 使用Flink DataStream API从Paimon表中读取数据
* Created by xuwei
*/
object FlinkDataStreamReadFromPaimonForSequencefield {
def main(args: Array[String]): Unit = {
val conf = new Configuration()
//指定WebUI界面的访问端口,默认就是8081
conf.setString(RestOptions.BIND_PORT,"8081")
//为了便于在本地通过页面观察任务执行情况,所以开启本地WebUI功能
val env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf)
env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
//禁用Chain,把多个算子拆分开单独执行,便于在开发和测试阶段观察,正式执行时不需要禁用Chain
env.disableOperatorChaining()
val tEnv = StreamTableEnvironment.create(env)
//创建Paimon类型的Catalog
tEnv.executeSql(
"""
|CREATE CATALOG paimon_catalog WITH (
| 'type'='paimon',
| 'warehouse'='hdfs://bigdata01:9000/paimon'
|)
|""".stripMargin)
tEnv.executeSql("USE CATALOG paimon_catalog")
//执行SQL查询,打印输出结果
val execSql =
"""
|SELECT * FROM `sequence_field` -- 此时默认只能查到数据的最新值
|-- /*+ OPTIONS('scan.mode'='from-snapshot','scan.snapshot-id' = '1') */ -- 通过动态表选项来指定数据读取(扫描)模式,以及从哪里开始读取
|""".stripMargin
val table = tEnv.sqlQuery(execSql)
table.execute().print()
}
}
接下来首先运行FlinkDataStreamWriteToPaimonForSequencefield
向Paimon表中写入一条+I
类型的数据。
再运行FlinkDataStreamReadFromPaimonForSequencefield
负责读取数据。
此时可以看到控制台输出如下结果:
+----+--------------------------------+-------------+-------------+--------------------------------+----------------------+
| op | name | age | height | city | ts_millis |
+----+--------------------------------+-------------+-------------+--------------------------------+----------------------+
| +I | jack | 11 | <NULL> | <NULL> | 1696125662000 |
修改FlinkDataStreamWriteToPaimonForSequencefield
中的代码,继续执行,向Paimon表中写入第2条+I
类型的数据。
注意:这条数据的主键和前面的数据是相同的。
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
//Row.ofKind(RowKind.INSERT, "jack", Int.box(11),null,null,Long.box(1696125662000L))//+I
Row.ofKind(RowKind.INSERT, "jack", Int.box(10),Int.box(175),null,Long.box(1696125660000L))//+I
//Row.ofKind(RowKind.INSERT, "jack", null,null,"beijing",Long.box(1696125661000L))//+I
)(Types.ROW_NAMED(Array("name", "age", "height", "city","ts_millis"),Types.STRING,Types.INT,Types.INT,Types.STRING,Types.LONG))
此时可以在FlinkDataStreamReadFromPaimonForSequencefield
的控制台看到如下结果:
| -U | jack | 11 | <NULL> | <NULL> | 1696125662000 |
| +U | jack | 11 | 175 | <NULL> | 1696125662000 |
注意:此时age字段的值没有被更新,因为这一条数据的时间没有上一条数据的时间大,因为我们指定了序列字段是ts_millis
,所以ts_millis
时间最大值的数据将是最后合并的结果。
其他为null
的字段的值是可以被覆盖更新的。
修改FlinkDataStreamWriteToPaimonForSequencefield
中的代码,继续执行,向Paimon表中写入第3条+I
类型的数据。
注意:这条数据的主键和前面的数据是相同的。
//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
//Row.ofKind(RowKind.INSERT, "jack", Int.box(11),null,null,Long.box(1696125662000L))//+I
//Row.ofKind(RowKind.INSERT, "jack", Int.box(10),Int.box(175),null,Long.box(1696125660000L))//+I
Row.ofKind(RowKind.INSERT, "jack", null,null,"beijing",Long.box(1696125661000L))//+I
)(Types.ROW_NAMED(Array("name", "age", "height", "city","ts_millis"),Types.STRING,Types.INT,Types.INT,Types.STRING,Types.LONG))
此时可以在FlinkDataStreamReadFromPaimonForSequencefield
的控制台看到如下结果:
| -U | jack | 11 | 175 | <NULL> | 1696125662000 |
| +U | jack | 11 | 175 | beijing | 1696125662000 |
这样最终得到的结果就是我们期望的了,这就是Sequence Field
的典型应用场景了。
3.3 Append Only表(仅追加表)
仅追加表很好理解,只要没有定义主键的表就是仅追加表。
仅追加表采用追加写入的方式,只能支持新增数据,不能更新和删除。
想要创建仅追加表很简单,我们只需要在建表语句中指定这个参数即可: write-mode = append-only
仅追加表主要用于无需更新数据的场景,例如数据仓库中ODS层的数据,不需要进行修改,保留数据原始的样子即可,此时推荐采用Paimon中的仅追加表。
仅追加表可以自动压缩表中的小文件,并且提供有序流式读取,我们也可以通过它来替代消息队列。
在实际工作中,除了数据库中的Binlog这种数据,还有大量的日志数据。
日志数据其实就属于Append Only数据,这种数据的数据量会非常大,一般情况下,我们会把这些日志数据存储在HDFS这种分布式文件系统中。
当我们在Paimon中使用仅追加表来存储这种数据的时候,数据可以实时写入,并且还可以实时读取;而且对实时资源的消耗也比较低,完全可以替代部分消息队列的场景。
最后,我们还需要注意一点,由于仅追加表没有主键,所以建议在使用的时候指定bucket-key
,其实就是指定数据分桶(Bucket)的字段。
因为Bucket的范围是由数据中一个或多个列的哈希值确定的,我们可以通过bucket-key
参数来指定分桶字段。
如果没有指定分桶字段,则默认会使用整行数据作为分桶字段,这样效率会比较低。
注意:如果是主键表,就算我们没有指定bucket-key
,也不会使用整行数据作为分桶字段,因为主键表中有主键字段,默认会使用主键字段作为分桶字段。
下面我们来通过一个案例感受一下仅追加表的使用:
创建package:tech.xuwei.paimon.appendonlytable
创建object:FlinkDataStreamWriteToPaimonForAppendonly
代码如下:
package tech.xuwei.paimon.appendonlytable
![img](https://img-blog.csdnimg.cn/img_convert/c165eb21abdd7333e5f0a2cca68e2216.png)
![img](https://img-blog.csdnimg.cn/img_convert/5045bf678f5168c5052f1a7a579420fa.png)
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
1696125662000L))//+I
//Row.ofKind(RowKind.INSERT, "jack", Int.box(10),Int.box(175),null,Long.box(1696125660000L))//+I
Row.ofKind(RowKind.INSERT, "jack", null,null,"beijing",Long.box(1696125661000L))//+I
)(Types.ROW_NAMED(Array("name", "age", "height", "city","ts_millis"),Types.STRING,Types.INT,Types.INT,Types.STRING,Types.LONG))
此时可以在FlinkDataStreamReadFromPaimonForSequencefield
的控制台看到如下结果:
| -U | jack | 11 | 175 | <NULL> | 1696125662000 |
| +U | jack | 11 | 175 | beijing | 1696125662000 |
这样最终得到的结果就是我们期望的了,这就是Sequence Field
的典型应用场景了。
3.3 Append Only表(仅追加表)
仅追加表很好理解,只要没有定义主键的表就是仅追加表。
仅追加表采用追加写入的方式,只能支持新增数据,不能更新和删除。
想要创建仅追加表很简单,我们只需要在建表语句中指定这个参数即可: write-mode = append-only
仅追加表主要用于无需更新数据的场景,例如数据仓库中ODS层的数据,不需要进行修改,保留数据原始的样子即可,此时推荐采用Paimon中的仅追加表。
仅追加表可以自动压缩表中的小文件,并且提供有序流式读取,我们也可以通过它来替代消息队列。
在实际工作中,除了数据库中的Binlog这种数据,还有大量的日志数据。
日志数据其实就属于Append Only数据,这种数据的数据量会非常大,一般情况下,我们会把这些日志数据存储在HDFS这种分布式文件系统中。
当我们在Paimon中使用仅追加表来存储这种数据的时候,数据可以实时写入,并且还可以实时读取;而且对实时资源的消耗也比较低,完全可以替代部分消息队列的场景。
最后,我们还需要注意一点,由于仅追加表没有主键,所以建议在使用的时候指定bucket-key
,其实就是指定数据分桶(Bucket)的字段。
因为Bucket的范围是由数据中一个或多个列的哈希值确定的,我们可以通过bucket-key
参数来指定分桶字段。
如果没有指定分桶字段,则默认会使用整行数据作为分桶字段,这样效率会比较低。
注意:如果是主键表,就算我们没有指定bucket-key
,也不会使用整行数据作为分桶字段,因为主键表中有主键字段,默认会使用主键字段作为分桶字段。
下面我们来通过一个案例感受一下仅追加表的使用:
创建package:tech.xuwei.paimon.appendonlytable
创建object:FlinkDataStreamWriteToPaimonForAppendonly
代码如下:
package tech.xuwei.paimon.appendonlytable
[外链图片转存中...(img-pT7g8366-1715277086021)]
[外链图片转存中...(img-6cGel7dH-1715277086021)]
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**