2024年最全3 Paimon数据湖中的表类型详解_paimon表和hive区别,大数据开发基础视频教程

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

因为是从头读取的数据,所以借助于Changelog Normalize物化节点,在状态中维护历史接收到的数据,这样就可以获取到完整的Changelog数据了。

(2)Input

如果将changelog-producer指定为input,表示在向Paimon表中存储数据的时候会将数据源中的Changelog也存储到Paimon表中的Changelog文件中。

典型应用场景是这样的:数据源是MySQL的binlog日志,此时数据源中具有完整的Changelog,所以可以完全依赖数据源中的Changelog,并且后续可以将这份Changelog提供给下游任务读取时使用。这样下游任务读取数据时就不需要产生Changelog Normalize物化节点了。

注意:如果我们把MySQL的binlog日志实时写入到了Kafka中,那么Kafka中存储的数据也相当于具有了完整的Changelog,此时在从Kafka这个数据源中读取数据的时候也是可以将changelog-producer设置为input的。
在这里插入图片描述

看这个图,当我们通过Flink CDC去采集数据库中的数据的时候,是可以获取到数据库中的所有Changelog变更日志数据的,所以里面会包含完整的+I、-U、+U、-D这些类型的数据。

此时在Paimon中创建表的时候,就可以指定changelog-producer=input,这样在存储数据的时候就会单独存储一份Changelog File。

下游任务在从Paimon表中读取数据的时候就不需要再产生Changelog Normalize物化节点生成Changelog了,直接从Paimon表中读取Changelog File即可获取到完整的Changelog数据。

下面我们来具体演示一下建表语句中指定changelog-producer=input时的效果

创建package:tech.xuwei.paimon.changelogproducer.input

创建object:FlinkDataStreamWriteToPaimonForInput

这个Object负责向Paimon表中模拟写入数据。

代码如下:

package tech.xuwei.paimon.changelogproducer.input

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.api.common.typeinfo.Types
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.table.api.{DataTypes, Schema}
import org.apache.flink.table.connector.ChangelogMode
import org.apache.flink.types.{Row, RowKind}

/**
 * 使用Flink DataStream API向Paimon表中写入数据
 * Created by xuwei
 */
object FlinkDataStreamWriteToPaimonForInput {
  def main(args: Array[String]): Unit = {
    //获取执行环境
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
    val tEnv = StreamTableEnvironment.create(env)


    //手工构造一个Changelog DataStream 数据流
    val dataStream = env.fromElements(
      Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
      //Row.ofKind(RowKind.UPDATE_BEFORE, "jack", Int.box(10))//-U
      //Row.ofKind(RowKind.UPDATE_AFTER, "jack", Int.box(11))//+U
      //Row.ofKind(RowKind.DELETE, "jack", Int.box(11))//-D
    )(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))


    //将DataStream转换为Table
    val schema = Schema.newBuilder()
      .column("name", DataTypes.STRING().notNull())//主键非空
      .column("age", DataTypes.INT())
      .primaryKey("name")//指定主键
      .build()
    val table = tEnv.fromChangelogStream(dataStream,schema,ChangelogMode.all())

    //创建Paimon类型的Catalog
    tEnv.executeSql(
      """
        |CREATE CATALOG paimon_catalog WITH (
        |    'type'='paimon',
        |    'warehouse'='hdfs://bigdata01:9000/paimon'
        |)
        |""".stripMargin)
    tEnv.executeSql("USE CATALOG paimon_catalog")

    //注册临时表
    tEnv.createTemporaryView("t1",table)

    //创建Paimon类型的表
    tEnv.executeSql(
      """
        |-- 注意:这里的表名使用反引号进行转义,否则会导致SQL DDL语句解析失败。
        |CREATE TABLE IF NOT EXISTS `changelog_input` (
        |    name STRING,
        |    age INT,
        |    PRIMARY KEY (name) NOT ENFORCED
        |) WITH (
        |    'changelog-producer' = 'input'
        |)
        |""".stripMargin)

    //向Paimon表中写入数据
    tEnv.executeSql(
      """
        |INSERT INTO `changelog_input`
        |SELECT name,age FROM t1
        |""".stripMargin)
  }

}

注意:在执行代码的时候通过修改env.fromElements(...)中的注释来实现实时产生多种类型数据的效果。

接下来创建Object:FlinkDataStreamReadFromPaimonForInput

这个Object负责从Paimon表中实时读取数据。

代码如下:

package tech.xuwei.paimon.changelogproducer.input

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.configuration.{Configuration, RestOptions}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment

/**
 * 使用Flink DataStream API从Paimon表中读取数据
 * Created by xuwei
 */
object FlinkDataStreamReadFromPaimonForInput {
  def main(args: Array[String]): Unit = {
    val conf = new Configuration()
    //指定WebUI界面的访问端口,默认就是8081
    conf.setString(RestOptions.BIND_PORT,"8081")
    //为了便于在本地通过页面观察任务执行情况,所以开启本地WebUI功能
    val env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf)
    env.setRuntimeMode(RuntimeExecutionMode.STREAMING)


    //禁用Chain,把多个算子拆分开单独执行,便于在开发和测试阶段观察,正式执行时不需要禁用Chain
    env.disableOperatorChaining()

    val tEnv = StreamTableEnvironment.create(env)

    //创建Paimon类型的Catalog
    tEnv.executeSql(
      """
        |CREATE CATALOG paimon_catalog WITH (
        |    'type'='paimon',
        |    'warehouse'='hdfs://bigdata01:9000/paimon'
        |)
        |""".stripMargin)
    tEnv.executeSql("USE CATALOG paimon_catalog")

    //执行SQL查询,打印输出结果
    val execSql =
      """
        |SELECT * FROM `changelog_input` -- 此时默认只能查到数据的最新值
        |-- /*+ OPTIONS('scan.mode'='from-snapshot','scan.snapshot-id' = '1') */ -- 通过动态表选项来指定数据读取(扫描)模式,以及从哪里开始读取
        |""".stripMargin
    val table = tEnv.sqlQuery(execSql)
    table.execute().print()

  }

}

接下来先运行FlinkDataStreamWriteToPaimonForInput向Paimon表中写入+I类型的数据。

再运行FlinkDataStreamReadFromPaimonForInput负责读取数据。
此时可以看到控制台输出如下结果:

+----+--------------------------------+-------------+
| op |                           name |         age |
+----+--------------------------------+-------------+
| +I |                           jack |          10 |

来看一下这个Flink任务的Web UI界面
在这里插入图片描述

在这可以发现,此时这个任务中没有产生Changelog Normalize物化节点,因为我们在Paimon表中指定了changelog-producer=input,所以这个Paimon表内部会自己存储Changelog数据。

此时到这个Paimon表的hdfs数据目录中查看一下:

[root@bigdata04 ~]# hdfs dfs -ls /paimon/default.db/changelog_input/bucket-0
Found 2 items
-rw-r--r--   3 yehua supergroup        566 2028-12-11 11:14 /paimon/default.db/changelog_input/bucket-0/changelog-bc3740e4-6adf-4e94-9d4e-c1ece10ed114-0.orc
-rw-r--r--   3 yehua supergroup        566 2028-12-11 11:14 /paimon/default.db/changelog_input/bucket-0/data-bc3740e4-6adf-4e94-9d4e-c1ece10ed114-1.orc

在这里可以发现里面有两个文件,一个以data开头的文件,里面存储的是数据自身。还有一个以changelog开头的文件,里面存储的是changelog变更数据。

修改FlinkDataStreamWriteToPaimonForInput中的代码,继续执行,向Paimon表中写入-U类型的数据。

//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
  //Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
  Row.ofKind(RowKind.UPDATE_BEFORE, "jack", Int.box(10))//-U
  //Row.ofKind(RowKind.UPDATE_AFTER, "jack", Int.box(11))//+U
  //Row.ofKind(RowKind.DELETE, "jack", Int.box(11))//-D
)(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))

此时可以在FlinkDataStreamReadFromPaimonForInput的控制台看到如下结果:

| -U |                           jack |          10 |

再修改FlinkDataStreamWriteToPaimonForInput中的代码,继续执行,向Paimon表中写入+U类型的数据。

//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
  //Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
  //Row.ofKind(RowKind.UPDATE_BEFORE, "jack", Int.box(10))//-U
  Row.ofKind(RowKind.UPDATE_AFTER, "jack", Int.box(11))//+U
  //Row.ofKind(RowKind.DELETE, "jack", Int.box(11))//-D
)(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))

此时可以在FlinkDataStreamReadFromPaimonForInput的控制台看到如下结果:

| +U |                           jack |          11 |

再修改FlinkDataStreamWriteToPaimonForInput中的代码,继续执行,向Paimon表中写入-D类型的数据。

//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
  //Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
  //Row.ofKind(RowKind.UPDATE_BEFORE, "jack", Int.box(10))//-U
  //Row.ofKind(RowKind.UPDATE_AFTER, "jack", Int.box(11))//+U
  Row.ofKind(RowKind.DELETE, "jack", Int.box(11))//-D
)(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))

此时可以在FlinkDataStreamReadFromPaimonForInput的控制台看到如下结果:

| -D |                           jack |          11 |

下面我们停止FlinkDataStreamReadFromPaimonForInput这个实时读取任务。

停止了之后,修改一下代码,因为默认只会读取最新的数据快照

val execSql =
  """
    |SELECT * FROM `changelog_input` -- 此时默认只能查到数据的最新值
    |/*+ OPTIONS('scan.mode'='from-snapshot','scan.snapshot-id' = '1') */ -- 通过动态表选项来指定数据读取(扫描)模式,以及从哪里开始读取
    |""".stripMargin

再重新运行FlinkDataStreamReadFromPaimonForNone这个实时读取任务,可以看到这个结果:

+----+--------------------------------+-------------+
| op |                           name |         age |
+----+--------------------------------+-------------+
| +I |                           jack |          10 |
| -U |                           jack |          10 |
| +U |                           jack |          11 |
| -D |                           jack |          11 |

注意:此时可以看到完整的数据变更情况,这是依赖于Paimon表中存储的changelog文件实现的,没有依赖于Flink任务中的Changelog Normalize物化节点。

所以说,如果我们数据源中可以提供完整的changelog数据,那么建议给存储数据的Paimon表设置changelog-producer=input,这样下游任务读取这个Paimon表的时候就可以直接从表中changelog文件里面获取变更数据了,不需要自己维护,效率比较高。

(3)Lookup

如果数据源中没有提供完整的 Changelog,并且我们也不想让下游任务在读取数据时通过Changelog Normalize物化节点来生成,那么这个时候我们可以考虑在Paimon表中配置 changelog-producer=lookup

这样可以通过Lookup(查找)的方式在向Paimon表中写入数据的时候生成 Changelog。

但是需要注意:Lookup这种方式目前处于实验阶段,还没有经过大量的生产环境验证。

在这里插入图片描述

看这个图,此时这个数据源中没有提供完整的Changelog,这个数据源可以是任意类型的数据源,数据源中可能只有+I、+U、-D类型的数据,缺少了-U类型的数据。

但是由于我们在Paimon表中设置了changelog-producer=lookup,所以在通过SinkWriter向Paimon表中写入数据的时候,底层会通过Lookup的方式查找表中已有的数据,自动生成Changelog File,补全-U类型的变更日志。

这样下游任务在读取这个Paimon表的时候就可以直接从表对应的Changelog File中读取到完整的+I、-U、+U、-D类型的数据了。

下面我们来具体演示一下建表语句中指定changelog-producer=lookup时的效果

创建package:tech.xuwei.paimon.changelogproducer.lookup

基于创建Object:FlinkDataStreamWriteToPaimonForLookup

这个Object负责向Paimon表中模拟写入数据。

代码如下:

package tech.xuwei.paimon.changelogproducer.lookup

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.api.common.typeinfo.Types
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.table.api.{DataTypes, Schema}
import org.apache.flink.table.connector.ChangelogMode
import org.apache.flink.types.{Row, RowKind}

/**
 * 使用Flink DataStream API向Paimon表中写入数据
 * Created by xuwei
 */
object FlinkDataStreamWriteToPaimonForLookup {
  def main(args: Array[String]): Unit = {
    //获取执行环境
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
    val tEnv = StreamTableEnvironment.create(env)


    //手工构造一个Changelog DataStream 数据流
    val dataStream = env.fromElements(
      Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
      //Row.ofKind(RowKind.UPDATE_AFTER, "jack", Int.box(11))//+U
      //Row.ofKind(RowKind.DELETE, "jack", Int.box(11))//-D
    )(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))


    //将DataStream转换为Table
    val schema = Schema.newBuilder()
      .column("name", DataTypes.STRING().notNull())//主键非空
      .column("age", DataTypes.INT())
      .primaryKey("name")//指定主键
      .build()
    val table = tEnv.fromChangelogStream(dataStream,schema,ChangelogMode.all())

    //创建Paimon类型的Catalog
    tEnv.executeSql(
      """
        |CREATE CATALOG paimon_catalog WITH (
        |    'type'='paimon',
        |    'warehouse'='hdfs://bigdata01:9000/paimon'
        |)
        |""".stripMargin)
    tEnv.executeSql("USE CATALOG paimon_catalog")

    //注册临时表
    tEnv.createTemporaryView("t1",table)

    //创建Paimon类型的表
    tEnv.executeSql(
      """
        |-- 注意:这里的表名使用反引号进行转义,否则会导致SQL DDL语句解析失败。
        |CREATE TABLE IF NOT EXISTS `changelog_lookup` (
        |    name STRING,
        |    age INT,
        |    PRIMARY KEY (name) NOT ENFORCED
        |) WITH (
        |    'changelog-producer' = 'lookup'
        |)
        |""".stripMargin)

    //向Paimon表中写入数据
    tEnv.executeSql(
      """
        |INSERT INTO `changelog_lookup`
        |SELECT name,age FROM t1
        |""".stripMargin)
  }

}

注意:在执行代码的时候通过修改env.fromElements(...)中的注释来实现实时产生多种类型数据的效果。

接下来创建Object:FlinkDataStreamReadFromPaimonForLookup

这个Object负责从Paimon表中实时读取数据。

代码如下:

package tech.xuwei.paimon.changelogproducer.lookup

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.configuration.{Configuration, RestOptions}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment

/**
 * 使用Flink DataStream API从Paimon表中读取数据
 * Created by xuwei
 */
object FlinkDataStreamReadFromPaimonForLookup {
  def main(args: Array[String]): Unit = {
    val conf = new Configuration()
    //指定WebUI界面的访问端口,默认就是8081
    conf.setString(RestOptions.BIND_PORT,"8081")
    //为了便于在本地通过页面观察任务执行情况,所以开启本地WebUI功能
    val env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf)
    env.setRuntimeMode(RuntimeExecutionMode.STREAMING)


    //禁用Chain,把多个算子拆分开单独执行,便于在开发和测试阶段观察,正式执行时不需要禁用Chain
    env.disableOperatorChaining()

    val tEnv = StreamTableEnvironment.create(env)

    //创建Paimon类型的Catalog
    tEnv.executeSql(
      """
        |CREATE CATALOG paimon_catalog WITH (
        |    'type'='paimon',
        |    'warehouse'='hdfs://bigdata01:9000/paimon'
        |)
        |""".stripMargin)
    tEnv.executeSql("USE CATALOG paimon_catalog")

    //执行SQL查询,打印输出结果
    val execSql =
      """
        |SELECT * FROM `changelog_lookup` -- 此时默认只能查到数据的最新值
        |-- /*+ OPTIONS('scan.mode'='from-snapshot','scan.snapshot-id' = '1') */ -- 通过动态表选项来指定数据读取(扫描)模式,以及从哪里开始读取
        |""".stripMargin
    val table = tEnv.sqlQuery(execSql)
    table.execute().print()

  }

}

接下来先运行FlinkDataStreamWriteToPaimonForLookup向Paimon表中写入+I类型的数据。

再运行FlinkDataStreamReadFromPaimonForLookup负责读取数据。
此时可以看到控制台输出如下结果:

+----+--------------------------------+-------------+
| op |                           name |         age |
+----+--------------------------------+-------------+
| +I |                           jack |          10 |

来看一下这个Flink任务的Web UI界面
在这里插入图片描述

在这可以发现,此时这个任务中没有产生Changelog Normalize物化节点,因为我们在Paimon表中指定了changelog-producer=lookup,Changelog数据会在我们向Paimon表中写入数据的时候通过Lookup产生。

到这个Paimon表的hdfs数据目录里面查看一下:

[root@bigdata04 ~]# hdfs dfs -ls /paimon/default.db/changelog_lookup/bucket-0
Found 3 items
-rw-r--r--   3 yehua supergroup        566 2028-12-11 12:01 /paimon/default.db/changelog_lookup/bucket-0/changelog-edb23cdc-09be-4437-b2ac-716e06e25c6d-1.orc
-rw-r--r--   3 yehua supergroup        566 2028-12-11 12:01 /paimon/default.db/changelog_lookup/bucket-0/data-edb23cdc-09be-4437-b2ac-716e06e25c6d-0.orc
-rw-r--r--   3 yehua supergroup        566 2028-12-11 12:01 /paimon/default.db/changelog_lookup/bucket-0/data-f07e00b5-a815-4d64-b8d6-1b8a2e64dab6-0.orc

在这可以发现,里面有1个changelog开头的文件,这个就是Lookup产生的。

修改FlinkDataStreamWriteToPaimonForLookup中的代码,继续执行,向Paimon表中写入+U类型的数据。

//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
  //Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
  Row.ofKind(RowKind.UPDATE_AFTER, "jack", Int.box(11))//+U
  //Row.ofKind(RowKind.DELETE, "jack", Int.box(11))//-D
)(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))

此时可以在FlinkDataStreamReadFromPaimonForLookup的控制台看到如下结果:

| -U |                           jack |          10 |
| +U |                           jack |          11 |

注意:虽然我们向Paimon表中只写入了+U类型的数据,但是Lookup在生成changelog的时候会自动补全-U类型的数据。

后面的-D类型的数据就不再演示了,效果和前面是一样的。

所以说,Lookup这种方式属于一种折中方案,数据源里面无法提供完整的changelog变更日志,所以无法使用Input,但是我们还想摆脱昂贵的Changelog Normalize物化节点,这个时候就可以考虑Lookup了。

最后还需要注意,Lookup这种方式虽然不需要产生Changelog Normalize物化节点,但是他在生成Changelog的时候依然会消耗一部分资源的,因为它需要触发数据查找这个过程,只不过消耗的资源比Changelog Normalize物化节点这种方式低一些。

(4)Full Compaction

如果你的数据源无法提供完整的changelog变更日志数据,并且你觉得Lookup这种方式还是比较消耗资源,此时可以考虑使用Full Compaction这种方式,在创建Paimon表的时候指定changelog-producer=full-compaction

Full Compaction这种方式可以解耦写入数据和生成changelog这两个步骤。
也就是说我们会先把数据写入到Paimon表中,当表中的数据触发完全压缩之后,Paimon 会比较两次完全压缩之间的结果并生成差异作为changelog(变更日志),生成changelog的延迟会受到完全压缩频率的影响。

通过指定full-compaction.delta-commits表属性,表示在增量提交Checkpoint后将会触发完全压缩。默认情况下值为1,所以每次提交Checkpoint都会进行完全压缩并生成changelog。
这样其实对生成changelog的延迟没有特别大的影响。

Full Compaction这种方式可以为任何类型的数据源生成完整的changelog变更日志。但是它没有Input方式的效率高,并且生成changelog的延迟可能会比较高。

不过Full Compaction这种方式解耦了写入数据和生成changelog这两个步骤,他的资源消耗比Lookup这种方式要低一些。
在这里插入图片描述

看这个图,此时这个数据源中没有提供完整的Changelog,这个数据源可以是任意类型的数据源,数据源中可能只有+I、+U、-D的数据,缺少了-U类型的数据。

但是由于我们在Paimon表中设置了changelog-producer=full-compaction,所以Paimon会周期性的比较两次完全压缩(Full Compaction)之间的结果并生成差异作为changelog(变更日志),并且在Changelog中补全缺失的变更日志。

这样下游任务在读取这个Paimon表的时候就可以从表对应的Changelog File中读取到完整的+I、-U、+U、-D类型的数据了。

下面我们来具体演示一下建表语句中指定changelog-producer=full-compaction时的效果

创建package:tech.xuwei.paimon.changelogproducer.fullcompaction

创建object:FlinkDataStreamWriteToPaimonForFullcompaction

这个Object负责向Paimon表中模拟写入数据。

代码如下:

package tech.xuwei.paimon.changelogproducer.fullcompaction

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.api.common.typeinfo.Types
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.table.api.{DataTypes, Schema}
import org.apache.flink.table.connector.ChangelogMode
import org.apache.flink.types.{Row, RowKind}

/**
 * 使用Flink DataStream API向Paimon表中写入数据
 * Created by xuwei
 */
object FlinkDataStreamWriteToPaimonForFullcompaction {
  def main(args: Array[String]): Unit = {
    //获取执行环境
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
    val tEnv = StreamTableEnvironment.create(env)


    //手工构造一个Changelog DataStream 数据流
    val dataStream = env.fromElements(
      Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
      //Row.ofKind(RowKind.UPDATE_AFTER, "jack", Int.box(11))//+U
      //Row.ofKind(RowKind.DELETE, "jack", Int.box(11))//-D
    )(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))


    //将DataStream转换为Table
    val schema = Schema.newBuilder()
      .column("name", DataTypes.STRING().notNull())//主键非空
      .column("age", DataTypes.INT())
      .primaryKey("name")//指定主键
      .build()
    val table = tEnv.fromChangelogStream(dataStream,schema,ChangelogMode.all())

    //创建Paimon类型的Catalog
    tEnv.executeSql(
      """
        |CREATE CATALOG paimon_catalog WITH (
        |    'type'='paimon',
        |    'warehouse'='hdfs://bigdata01:9000/paimon'
        |)
        |""".stripMargin)
    tEnv.executeSql("USE CATALOG paimon_catalog")

    //注册临时表
    tEnv.createTemporaryView("t1",table)

    //创建Paimon类型的表
    tEnv.executeSql(
      """
        |-- 注意:这里的表名使用反引号进行转义,否则会导致SQL DDL语句解析失败。
        |CREATE TABLE IF NOT EXISTS `changelog_fullcompaction` (
        |    name STRING,
        |    age INT,
        |    PRIMARY KEY (name) NOT ENFORCED
        |) WITH (
        |    'changelog-producer' = 'full-compaction',
        |    'full-compaction.delta-commits' = '1'
        |)
        |""".stripMargin)

    //向Paimon表中写入数据
    tEnv.executeSql(
      """
        |INSERT INTO `changelog_fullcompaction`
        |SELECT name,age FROM t1
        |""".stripMargin)
  }

}

注意:在执行代码的时候通过修改env.fromElements(...)中的注释来实现实时产生多种类型数据的效果。

接下来创建Object:FlinkDataStreamReadFromPaimonForFullcompaction

这个Object负责从Paimon表中实时读取数据。

代码如下:

package tech.xuwei.paimon.changelogproducer.fullcompaction

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.configuration.{Configuration, RestOptions}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment

/**
 * 使用Flink DataStream API从Paimon表中读取数据
 * Created by xuwei
 */
object FlinkDataStreamReadFromPaimonForFullcompaction {
  def main(args: Array[String]): Unit = {
    val conf = new Configuration()
    //指定WebUI界面的访问端口,默认就是8081
    conf.setString(RestOptions.BIND_PORT,"8081")
    //为了便于在本地通过页面观察任务执行情况,所以开启本地WebUI功能
    val env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf)
    env.setRuntimeMode(RuntimeExecutionMode.STREAMING)


    //禁用Chain,把多个算子拆分开单独执行,便于在开发和测试阶段观察,正式执行时不需要禁用Chain
    env.disableOperatorChaining()

    val tEnv = StreamTableEnvironment.create(env)

    //创建Paimon类型的Catalog
    tEnv.executeSql(
      """
        |CREATE CATALOG paimon_catalog WITH (
        |    'type'='paimon',
        |    'warehouse'='hdfs://bigdata01:9000/paimon'
        |)
        |""".stripMargin)
    tEnv.executeSql("USE CATALOG paimon_catalog")

    //执行SQL查询,打印输出结果
    val execSql =
      """
        |SELECT * FROM `changelog_fullcompaction` -- 此时默认只能查到数据的最新值
        |--/*+ OPTIONS('scan.mode'='from-snapshot','scan.snapshot-id' = '1') */ -- 通过动态表选项来指定数据读取(扫描)模式,以及从哪里开始读取
        |""".stripMargin
    val table = tEnv.sqlQuery(execSql)
    table.execute().print()

  }

}

接下来先运行FlinkDataStreamWriteToPaimonForFullcompaction向Paimon表中写入+I类型的数据。

再运行FlinkDataStreamReadFromPaimonForFullcompaction负责读取数据。
此时可以看到控制台输出如下结果:

+----+--------------------------------+-------------+
| op |                           name |         age |
+----+--------------------------------+-------------+
| +I |                           jack |          10 |

来看一下这个Flink任务的Web UI界面
在这里插入图片描述

在这可以发现,此时这个任务中没有产生Changelog Normalize物化节点,其实只有我们把Changelog Producer设置为none的时候Flink任务才会产生Changelog Normalize物化节点。

那此时我们到这个Paimon表的hdfs数据目录里面查看一下有没有产生changelog文件:

[root@bigdata04 ~]# hdfs dfs -ls /paimon/default.db/changelog_fullcompaction/bucket-0
Found 3 items
-rw-r--r--   3 yehua supergroup        566 2028-12-11 16:20 /paimon/default.db/changelog_fullcompaction/bucket-0/changelog-264c4b74-10dd-493d-95e0-8f5760e90dc8-1.orc
-rw-r--r--   3 yehua supergroup        566 2028-12-11 16:20 /paimon/default.db/changelog_fullcompaction/bucket-0/data-264c4b74-10dd-493d-95e0-8f5760e90dc8-0.orc
-rw-r--r--   3 yehua supergroup        566 2028-12-11 16:20 /paimon/default.db/changelog_fullcompaction/bucket-0/data-d7adcc2a-804a-4a13-876a-fb77dc4a0952-0.orc

在这可以发现,里面有1个changelog开头的文件,这个就是Full Compaction这种方式产生的。

修改FlinkDataStreamWriteToPaimonForFullcompaction中的代码,继续执行,向Paimon表中写入+U类型的数据。

//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
  //Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
  Row.ofKind(RowKind.UPDATE_AFTER, "jack", Int.box(11))//+U
  //Row.ofKind(RowKind.DELETE, "jack", Int.box(11))//-D
)(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))

此时可以在FlinkDataStreamReadFromPaimonForFullcompaction的控制台看到如下结果:

| -U |                           jack |          10 |
| +U |                           jack |          11 |

注意:这块可能会有一些延迟,具体的延迟程度要看完全压缩触发的频率,我们前面指定了full-compaction.delta-commits的值为1,表示在每次提交Checkpoint都会进行完全压缩并生成changelog,所以目前的延迟是比较低的。

但是我们需要注意:完全压缩是一个资源密集型的过程,会消耗一定的CPU磁盘IO,因此过于频繁的完全压缩可能会导致写入速度变慢,所以这块也需要均衡考虑。

后面的-D类型的数据就不再演示了,效果和前面是一样的。

(5)总结
咱们前面一共讲了4种Changelog Producer。

  • 在实际工作中None这种方式基本上是不使用的,成本太高。
  • 如果数据源是完整的CDC数据,直接使用Input这种方式即可,成本最低,效率最高。
  • 如果数据源中无法提供完整的Changelog,此时可以考虑使用Lookup和Full Compaction。
  • 如果你觉得使用Lookup来实时生成 Changelog 成本过大,可以考虑通过Full Compaction和对应较大的延迟,以非常低的成本生成 Changelog。
3.2.1.3 Merge Engines

Merge Engines:可以翻译为合并引擎。

针对多条相同主键的数据,Paimon主键表收到之后,应该如何进行合并处理?

针对这块的处理逻辑,Paimon提供了参数merge-engine,通过这个参数来指定如何合并数据。

merge-engine一共支持3种取值:

  • deduplicate:默认值,表示去重,也就是说主键表默认只会保留相同主键最新的数据。
  • partial-update:表示局部更新,通过相同主键的多条数据来更新不同字段的值。
  • aggregation:表示聚合,可以对相同主键的多条数据根据指定的字段进行聚合。

下面我们来详细分析一下这几种合并引擎。

(1)Deduplicate

如果我们在Paimon中创建主键表时不指定merge-engine参数,那么默认值就是deduplicate

此时只保留主键最新的数据,之前表中相同主键的数据会被丢弃。

注意:如果主键最新的数据是-D类型的,那么这个主键的所有数据都会被删除。

下面我们来具体演示一下。
核心的思路是这样的:我们通过数据源模拟产生2条相同主键的+I类型的数据,依次写入到主键表中,最终发现主键表中只会保留最新的那一条数据。

创建package:tech.xuwei.paimon.mergeengine.deduplicate
创建object:FlinkDataStreamWriteToPaimonForDeduplicate

这个Object负责向Paimon表中模拟写入数据。
代码如下:

package tech.xuwei.paimon.mergeengine.deduplicate

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.api.common.typeinfo.Types
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.table.api.{DataTypes, Schema}
import org.apache.flink.table.connector.ChangelogMode
import org.apache.flink.types.{Row, RowKind}

/**
 * 使用Flink DataStream API向Paimon表中写入数据
 * Created by xuwei
 */
object FlinkDataStreamWriteToPaimonForDeduplicate {
  def main(args: Array[String]): Unit = {
    //获取执行环境
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
    val tEnv = StreamTableEnvironment.create(env)


    //手工构造一个Changelog DataStream 数据流
    val dataStream = env.fromElements(
      Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
      //Row.ofKind(RowKind.INSERT, "jack", Int.box(12))//+I
    )(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))


    //将DataStream转换为Table
    val schema = Schema.newBuilder()
      .column("name", DataTypes.STRING().notNull())//主键非空
      .column("age", DataTypes.INT())
      .primaryKey("name")//指定主键
      .build()
    val table = tEnv.fromChangelogStream(dataStream,schema,ChangelogMode.all())

    //创建Paimon类型的Catalog
    tEnv.executeSql(
      """
        |CREATE CATALOG paimon_catalog WITH (
        |    'type'='paimon',
        |    'warehouse'='hdfs://bigdata01:9000/paimon'
        |)
        |""".stripMargin)
    tEnv.executeSql("USE CATALOG paimon_catalog")

    //注册临时表
    tEnv.createTemporaryView("t1",table)

    //创建Paimon类型的表
    tEnv.executeSql(
      """
        |-- 注意:这里的表名使用反引号进行转义,否则会导致SQL DDL语句解析失败。
        |CREATE TABLE IF NOT EXISTS `merge_engine_deduplicate` (
        |    name STRING,
        |    age INT,
        |    PRIMARY KEY (name) NOT ENFORCED
        |) WITH (
        |    'merge-engine' = 'deduplicate' -- 注意:值为deduplicate时这一行配置可以省略不写
        |)
        |""".stripMargin)

    //向Paimon表中写入数据
    tEnv.executeSql(
      """
        |INSERT INTO `merge_engine_deduplicate`
        |SELECT name,age FROM t1
        |""".stripMargin)
  }

}

注意:在执行代码的时候通过修改env.fromElements(...)中的注释来实现实时产生多条+I类型数据的效果。

接下来创建Object:FlinkDataStreamReadFromPaimonForDeduplicate

这个Object负责从Paimon表中实时读取数据。

代码如下:

package tech.xuwei.paimon.mergeengine.deduplicate

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.configuration.{Configuration, RestOptions}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment

/**
 * 使用Flink DataStream API从Paimon表中读取数据
 * Created by xuwei
 */
object FlinkDataStreamReadFromPaimonForDeduplicate {
  def main(args: Array[String]): Unit = {
    val conf = new Configuration()
    //指定WebUI界面的访问端口,默认就是8081
    conf.setString(RestOptions.BIND_PORT,"8081")
    //为了便于在本地通过页面观察任务执行情况,所以开启本地WebUI功能
    val env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf)
    env.setRuntimeMode(RuntimeExecutionMode.STREAMING)


    //禁用Chain,把多个算子拆分开单独执行,便于在开发和测试阶段观察,正式执行时不需要禁用Chain
    env.disableOperatorChaining()

    val tEnv = StreamTableEnvironment.create(env)

    //创建Paimon类型的Catalog
    tEnv.executeSql(
      """
        |CREATE CATALOG paimon_catalog WITH (
        |    'type'='paimon',
        |    'warehouse'='hdfs://bigdata01:9000/paimon'
        |)
        |""".stripMargin)
    tEnv.executeSql("USE CATALOG paimon_catalog")

    //执行SQL查询,打印输出结果
    val execSql =
      """
        |SELECT * FROM `merge_engine_deduplicate` -- 此时默认只能查到数据的最新值
        |-- /*+ OPTIONS('scan.mode'='from-snapshot','scan.snapshot-id' = '1') */ -- 通过动态表选项来指定数据读取(扫描)模式,以及从哪里开始读取
        |""".stripMargin
    val table = tEnv.sqlQuery(execSql)
    table.execute().print()

  }

}

接下来先运行FlinkDataStreamWriteToPaimonForDeduplicate向Paimon表中写入一条+I类型的数据。

再运行FlinkDataStreamReadFromPaimonForDeduplicate负责读取数据。
此时可以看到控制台输出如下结果:

+----+--------------------------------+-------------+
| op |                           name |         age |
+----+--------------------------------+-------------+
| +I |                           jack |          10 |

修改FlinkDataStreamWriteToPaimonForDeduplicate中的代码,继续执行,向Paimon表中写入第2条+I类型的数据。
注意:这两条数据的主键是相同的。

//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
  //Row.ofKind(RowKind.INSERT, "jack", Int.box(10))//+I
//Row.ofKind(RowKind.INSERT, "jack", Int.box(12))//+I
)(Types.ROW_NAMED(Array("name", "age"),Types.STRING,Types.INT))

此时可以在FlinkDataStreamReadFromPaimonForDeduplicate的控制台看到如下结果:

| -U |                           jack |          10 |
| +U |                           jack |          12 |

从这可以看出来,之前的数据被删除了,新增了一条年龄为12的数据。
所以deduplicate这种表引擎只会保留相同主键最新的数据。

(2)Partial Update

如果我们在Paimon中创建主键表时指定merge-engine的值为partial-update,那么就可以实现局部更新数据字段的效果。

举个例子:使用多个 Flink流任务去更新同一张表,每个流任务只更新一张表的部分列,最终实现一行完整数据的更新。对于需要构建宽表的业务场景,使用partial-update是非常合适的,并且构建宽表的操作也比较简单。

注意:这里所说的多个Flink 流任务并不是指多个Flink Job并发写同一张Paimon表,这样比较麻烦。目前推荐的是将多个Flink流任务 UNION ALL 起来,最终启动一个Flink Job 向Paimon表中写入数据。

还有一点需要注意的是:partial-update这种表引擎不支持流读,需要结合Lookup或者full-compaction变更日志生产者一起使用才可以支持流读。

同时由于partial-update不能接收和处理DELETE消息,为了避免接收到DELETE消息报错,需要在建表语句中配置partial-update.ignore-delete= true表示忽略 DELETE消息。

下面我们来具体演示一下:

核心思路是这样的,准备模拟产生3条+I类型的数据,数据内容大致是这样的。

<jack, 10, 175, null>
<jack, null, null, beijing>
<jack, 11, null, null>

将这3条数据写入到Paimon主键表之后,会得到什么结果呢?
结果是这样的:<jack, 11, 175, beijing>

为什么呢?因为null字段不会覆盖更新字段的值。

创建package:tech.xuwei.paimon.mergeengine.partialupdate
创建object:FlinkDataStreamWriteToPaimonForPartialupdate

这个Object负责向Paimon表中模拟写入数据。
代码如下:

package tech.xuwei.paimon.mergeengine.partialupdate

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.api.common.typeinfo.Types
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.table.api.{DataTypes, Schema}
import org.apache.flink.table.connector.ChangelogMode
import org.apache.flink.types.{Row, RowKind}

/**
 * 使用Flink DataStream API向Paimon表中写入数据
 * Created by xuwei
 */
object FlinkDataStreamWriteToPaimonForPartialupdate {
  def main(args: Array[String]): Unit = {
    //获取执行环境
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
    val tEnv = StreamTableEnvironment.create(env)


    //手工构造一个Changelog DataStream 数据流
    val dataStream = env.fromElements(
      Row.ofKind(RowKind.INSERT, "jack", Int.box(10),Int.box(175),null)//+I
      //Row.ofKind(RowKind.INSERT, "jack", null,null,"beijing")//+I
      //Row.ofKind(RowKind.INSERT, "jack", Int.box(11),null,null)//+I
    )(Types.ROW_NAMED(Array("name", "age", "height", "city"),Types.STRING,Types.INT,Types.INT,Types.STRING))


    //将DataStream转换为Table
    val schema = Schema.newBuilder()
      .column("name", DataTypes.STRING().notNull())//主键非空
      .column("age", DataTypes.INT())
      .column("height", DataTypes.INT())
      .column("city", DataTypes.STRING())
      .primaryKey("name")//指定主键
      .build()
    val table = tEnv.fromChangelogStream(dataStream,schema,ChangelogMode.all())

    //创建Paimon类型的Catalog
    tEnv.executeSql(
      """
        |CREATE CATALOG paimon_catalog WITH (
        |    'type'='paimon',
        |    'warehouse'='hdfs://bigdata01:9000/paimon'
        |)
        |""".stripMargin)
    tEnv.executeSql("USE CATALOG paimon_catalog")

    //注册临时表
    tEnv.createTemporaryView("t1",table)

    //创建Paimon类型的表
    tEnv.executeSql(
      """
        |-- 注意:这里的表名使用反引号进行转义,否则会导致SQL DDL语句解析失败。
        |CREATE TABLE IF NOT EXISTS `merge_engine_partialupdate` (
        |    name STRING,
        |    age INT,
        |    height INT,
        |    city STRING,
        |    PRIMARY KEY (name) NOT ENFORCED
        |) WITH (
        |    'merge-engine' = 'partial-update',
        |    'partial-update.ignore-delete' = 'true'
        |)
        |""".stripMargin)

    //向Paimon表中写入数据
    tEnv.executeSql(
      """
        |INSERT INTO `merge_engine_partialupdate`
        |SELECT name,age,height,city FROM t1
        |""".stripMargin)
  }

}

注意:在执行代码的时候通过修改env.fromElements(...)中的注释来实现实时产生多条+I类型数据的效果。

接下来创建Object:FlinkDataStreamReadFromPaimonForPartialupdate

这个Object负责从Paimon表中实时读取数据。

代码如下:

package tech.xuwei.paimon.mergeengine.partialupdate

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.configuration.{Configuration, RestOptions}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment

/**
 * 使用Flink DataStream API从Paimon表中读取数据
 * Created by xuwei
 */
object FlinkDataStreamReadFromPaimonForPartialupdate {
  def main(args: Array[String]): Unit = {
    val conf = new Configuration()
    //指定WebUI界面的访问端口,默认就是8081
    conf.setString(RestOptions.BIND_PORT,"8081")
    //为了便于在本地通过页面观察任务执行情况,所以开启本地WebUI功能
    val env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf)
    env.setRuntimeMode(RuntimeExecutionMode.STREAMING)


    //禁用Chain,把多个算子拆分开单独执行,便于在开发和测试阶段观察,正式执行时不需要禁用Chain
    env.disableOperatorChaining()

    val tEnv = StreamTableEnvironment.create(env)

    //创建Paimon类型的Catalog
    tEnv.executeSql(
      """
        |CREATE CATALOG paimon_catalog WITH (
        |    'type'='paimon',
        |    'warehouse'='hdfs://bigdata01:9000/paimon'
        |)
        |""".stripMargin)
    tEnv.executeSql("USE CATALOG paimon_catalog")

    //执行SQL查询,打印输出结果
    val execSql =
      """
        |SELECT * FROM `merge_engine_partialupdate` -- 此时默认只能查到数据的最新值
        |-- /*+ OPTIONS('scan.mode'='from-snapshot','scan.snapshot-id' = '1') */ -- 通过动态表选项来指定数据读取(扫描)模式,以及从哪里开始读取
        |""".stripMargin
    val table = tEnv.sqlQuery(execSql)
    table.execute().print()

  }

}

接下来先运行FlinkDataStreamWriteToPaimonFoPartialupdate向Paimon表中写入一条+I类型的数据。

再运行FlinkDataStreamReadFromPaimonForPartialupdate负责读取数据。
结果发现代码报错了,错误日志如下:

Exception in thread "main" java.lang.RuntimeException: Partial update streaming reading is not supported. You can use 'lookup' or 'full-compaction' changelog producer to support streaming reading.
	at org.apache.paimon.flink.utils.TableScanUtils.streamingReadingValidate(TableScanUtils.java:45)
	at org.apache.paimon.flink.source.FlinkSourceBuilder.build(FlinkSourceBuilder.java:170)
	at org.apache.paimon.flink.source.AbstractDataTableSource.configureSource(AbstractDataTableSource.java:233)
	at org.apache.paimon.flink.source.AbstractDataTableSource.lambda$getScanRuntimeProvider$0(AbstractDataTableSource.java:210)
	at org.apache.paimon.flink.PaimonDataStreamScanProvider.produceDataStream(PaimonDataStreamScanProvider.java:44)

通过错误日志可以看出来,Partial update表引擎默认不支持流读,我们现在在代码中指定了运行模式为STREAMING,就是流式读取的意思。

我们可以在表中指定使用lookup或者full-compaction变更日志生产者来支持流读。

注意:如果不需要流读的话,可以在代码中指定运行模式为BATCH,此时执行是不报错的。

如果想要使用流读,就需要在建表语中修改变更日志生产者了。

//创建Paimon类型的表
tEnv.executeSql(
  """
    |-- 注意:这里的表名使用反引号进行转义,否则会导致SQL DDL语句解析失败。
    |CREATE TABLE IF NOT EXISTS `merge_engine_partialupdate` (
    |    name STRING,
    |    age INT,
    |    height INT,
    |    city STRING,
    |    PRIMARY KEY (name) NOT ENFORCED
    |) WITH (
    |    'changelog-producer' = 'lookup',-- 注意:partial-update表引擎需要和lookup或者full-compaction一起使用时才支持流读
    |    'merge-engine' = 'partial-update',
    |    'partial-update.ignore-delete' = 'true'
    |)
    |""".stripMargin)

merge_engine_partialupdate这个表我们已经创建过了,所以我们需要删除这个表。其实有一种快捷方式,我们直接到HDFS中删除这个表对应的目录其实就可以了。
在这里插入图片描述

接下来继续重新运行FlinkDataStreamWriteToPaimonForPartialupdate向Paimon表中写入一条+I类型的数据。

再运行FlinkDataStreamReadFromPaimonForPartialupdate负责读取数据。
此时可以看到控制台输出如下结果:

+----+--------------------------------+-------------+-------------+--------------------------------+
| op |                           name |         age |      height |                           city |
+----+--------------------------------+-------------+-------------+--------------------------------+
| +I |                           jack |          10 |         175 |                         <NULL> |

注意:此时city字段的值为null

修改FlinkDataStreamWriteToPaimonForDeduplicate中的代码,继续执行,向Paimon表中写入第2条+I类型的数据。
注意:这条数据的主键和前面的数据是相同的。

//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
  //Row.ofKind(RowKind.INSERT, "jack", Int.box(10),Int.box(175),null)//+I
  Row.ofKind(RowKind.INSERT, "jack", null,null,"beijing")//+I
  //Row.ofKind(RowKind.INSERT, "jack", Int.box(11),null,null)//+I
)(Types.ROW_NAMED(Array("name", "age", "height", "city"),Types.STRING,Types.INT,Types.INT,Types.STRING))

此时可以在FlinkDataStreamReadFromPaimonForPartialupdate的控制台看到如下结果:

| -U |                           jack |          10 |         175 |                         <NULL> |
| +U |                           jack |          10 |         175 |                        beijing |

在这里看到最新数据中的city字段有值了,其实刚才这一条数据相当于局部更新了city字段的值。
注意:其他几个为null的字段不会覆盖之前的字段的值,那也就意味着,如果我们指定了字段的值为null,说明不需要覆盖更新这个字段的值。

修改FlinkDataStreamWriteToPaimonForDeduplicate中的代码,继续执行,向Paimon表中写入第3条+I类型的数据。
注意:这条数据的主键和前面的数据是相同的。

//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
  //Row.ofKind(RowKind.INSERT, "jack", Int.box(10),Int.box(175),null)//+I
  //Row.ofKind(RowKind.INSERT, "jack", null,null,"beijing")//+I
  Row.ofKind(RowKind.INSERT, "jack", Int.box(11),null,null)//+I
)(Types.ROW_NAMED(Array("name", "age", "height", "city"),Types.STRING,Types.INT,Types.INT,Types.STRING))

此时可以在FlinkDataStreamReadFromPaimonForPartialupdate的控制台看到如下结果:

| -U |                           jack |          10 |         175 |                        beijing |
| +U |                           jack |          11 |         175 |                        beijing |

在这里可以发现,age字段的值被修改为了11,其他字段的值没变。

这样我们就实现了局部更新数据字段的效果,这种业务场景和构建宽表的场景是非常类似的,所以Partial Update这个表引擎适合用于构建宽表的业务场景。

(3)Aggregation

如果我们在Paimon中创建主键表时指定merge-engine的值为aggregation,那么就可以实现指定列数据预聚合的效果了。

此时可以通过聚合函数做一些预聚合,除了主键以外的每个列都可以指定一个聚合函数,相同主键的数据就可以按照列上指定的聚合函数进行相应的预聚合;

常见的聚合函数包括sum、max、min等。

如果没有给列指定聚合函数,则默认使用last-non-null-value这个聚合函数,此时表示只保存最新非空值,空值不会覆盖。

注意:除了sum这个聚合函数,其他的聚合函数都不支持读取回撤数据,为了避免接收到DELETE和UPDATE BEFORE类型的消息报错,我们需要在建表语句中给指定字段进行配置fields.${field_name}.ignore-retract = true 忽略回撤数据。

还有一点需要注意:Aggregation表引擎也需要和Lookup或者full-compaction变更日志生产者一起使用。

下面我们来具体演示一下:

核心思路是这样的,准备模拟产生2条+I类型的数据,数据内容大致是这样的。

<1, 3.4, 10>
<1, 2.12, 15>

解释:<商品id(id),商品价格(price),商品数量(count)>

针对商品价格,我们希望统计最大值,针对商品数量,我们希望统计累加的和。

将这2条数据写入到Paimon主键表之后,会得到什么结果呢?
结果是这样的:<1,3.4,25>

创建package:tech.xuwei.paimon.mergeengine.Aggregation
创建object:FlinkDataStreamWriteToPaimonForAggregation

这个Object负责向Paimon表中模拟写入数据。
代码如下:

package tech.xuwei.paimon.mergeengine.aggregation

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.api.common.typeinfo.Types
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.table.api.{DataTypes, Schema}
import org.apache.flink.table.connector.ChangelogMode
import org.apache.flink.types.{Row, RowKind}

/**
 * 使用Flink DataStream API向Paimon表中写入数据
 * Created by xuwei
 */
object FlinkDataStreamWriteToPaimonForAggregation {
  def main(args: Array[String]): Unit = {
    //获取执行环境
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
    val tEnv = StreamTableEnvironment.create(env)


    //手工构造一个Changelog DataStream 数据流
    val dataStream = env.fromElements(
      Row.ofKind(RowKind.INSERT, "1", Double.box(3.4), Int.box(10))//+I
      //Row.ofKind(RowKind.INSERT, "1", Double.box(2.12), Int.box(15))//+I
    )(Types.ROW_NAMED(Array("id", "price", "count"),Types.STRING,Types.DOUBLE,Types.INT))


    //将DataStream转换为Table
    val schema = Schema.newBuilder()
      .column("id", DataTypes.STRING().notNull())//主键非空
      .column("price", DataTypes.DOUBLE())
      .column("count", DataTypes.INT())
      .primaryKey("id")//指定主键
      .build()
    val table = tEnv.fromChangelogStream(dataStream,schema,ChangelogMode.all())

    //创建Paimon类型的Catalog
    tEnv.executeSql(
      """
        |CREATE CATALOG paimon_catalog WITH (
        |    'type'='paimon',
        |    'warehouse'='hdfs://bigdata01:9000/paimon'
        |)
        |""".stripMargin)
    tEnv.executeSql("USE CATALOG paimon_catalog")

    //注册临时表
    tEnv.createTemporaryView("t1",table)

    //创建Paimon类型的表
    tEnv.executeSql(
      """
        |-- 注意:这里的表名使用反引号进行转义,否则会导致SQL DDL语句解析失败。
        |CREATE TABLE IF NOT EXISTS `merge_engine_aggregation` (
        |    id STRING,
        |    price DOUBLE,
        |    `count` INT,
        |    PRIMARY KEY (id) NOT ENFORCED
        |) WITH (
        |    'changelog-producer' = 'lookup',-- 注意:aggregation表引擎需要和lookup或者full-compaction一起使用时才支持流读
        |    'merge-engine' = 'aggregation',
        |    'fields.price.aggregate-function' = 'max',
        |    'fields.count.aggregate-function' = 'sum',
        |    'fields.price.ignore-retract' = 'true'
        |)
        |""".stripMargin)

    //向Paimon表中写入数据
    tEnv.executeSql(
      """
        |INSERT INTO `merge_engine_aggregation`
        |SELECT id,price,`count` FROM t1
        |""".stripMargin)
  }

}

注意:count字段需要加反引号转义,否则SQL会报错。

注意:在执行代码的时候通过修改env.fromElements(...)中的注释来实现实时产生多条+I类型数据的效果。

接下来创建Object:FlinkDataStreamReadFromPaimonForAggregation

这个Object负责从Paimon表中实时读取数据。

代码如下:

package tech.xuwei.paimon.mergeengine.aggregation

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.configuration.{Configuration, RestOptions}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment

/**
 * 使用Flink DataStream API从Paimon表中读取数据
 * Created by xuwei
 */
object FlinkDataStreamReadFromPaimonForAggregation {
  def main(args: Array[String]): Unit = {
    val conf = new Configuration()
    //指定WebUI界面的访问端口,默认就是8081
    conf.setString(RestOptions.BIND_PORT,"8081")
    //为了便于在本地通过页面观察任务执行情况,所以开启本地WebUI功能
    val env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf)
    env.setRuntimeMode(RuntimeExecutionMode.STREAMING)


    //禁用Chain,把多个算子拆分开单独执行,便于在开发和测试阶段观察,正式执行时不需要禁用Chain
    env.disableOperatorChaining()

    val tEnv = StreamTableEnvironment.create(env)

    //创建Paimon类型的Catalog
    tEnv.executeSql(
      """
        |CREATE CATALOG paimon_catalog WITH (
        |    'type'='paimon',
        |    'warehouse'='hdfs://bigdata01:9000/paimon'
        |)
        |""".stripMargin)
    tEnv.executeSql("USE CATALOG paimon_catalog")

    //执行SQL查询,打印输出结果
    val execSql =
      """
        |SELECT * FROM `merge_engine_aggregation` -- 此时默认只能查到数据的最新值
        |-- /*+ OPTIONS('scan.mode'='from-snapshot','scan.snapshot-id' = '1') */ -- 通过动态表选项来指定数据读取(扫描)模式,以及从哪里开始读取
        |""".stripMargin
    val table = tEnv.sqlQuery(execSql)
    table.execute().print()

  }

}

接下来首先运行FlinkDataStreamWriteToPaimonForAggregation向Paimon表中写入一条+I类型的数据。

再运行FlinkDataStreamReadFromPaimonForAggregation负责读取数据。
此时可以看到控制台输出如下结果:

+----+--------------------------------+--------------------------------+-------------+
| op |                             id |                          price |       count |
+----+--------------------------------+--------------------------------+-------------+
| +I |                              1 |                            3.4 |          10 |

修改FlinkDataStreamWriteToPaimonForAggregation中的代码,继续执行,向Paimon表中写入第2条+I类型的数据。
注意:这条数据的主键和前面的数据是相同的。

//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
  //Row.ofKind(RowKind.INSERT, "1", Double.box(3.4), Int.box(10))//+I
  Row.ofKind(RowKind.INSERT, "1", Double.box(2.12), Int.box(15))//+I
)(Types.ROW_NAMED(Array("id", "price", "count"),Types.STRING,Types.DOUBLE,Types.INT))

此时可以在FlinkDataStreamReadFromPaimonForPartialupdate的控制台看到如下结果:

| -U |                              1 |                            3.4 |          10 |
| +U |                              1 |                            3.4 |          25 |

此时可以发现,price还是3.4,因为price字段是取的最大值;count字段的值变成了25,因为count字段取的是和。

通过Aggregation这个表引擎,可以实现数据写入的时候直接预聚合,可以简化数据聚合统计这块的操作。

3.2.1.4 Sequence Field

默认情况下,Paimon中的主键表会根据数据的输入顺序确定数据的合并顺序,最后输入的数据会在最后进行合并,但是在分布式计算程序中,肯定会存在数据乱序问题的,这样可能会导致数据合并的结果并不是我们期望的。

在Flink中,针对数据乱序问题是通过watermark解决的。

在Paimon的主键表中,可以通过Sequence Field(序列字段)来解决。

针对咱们前面讲到的使用Partial Update表引擎构建宽表的案例,如果数据的写入顺序出现了错乱,肯定会导致结果异常的。

针对这个需求,这3条数据是这样的,默认情况下这3条数据是按照时间先后顺序产生的

1:<jack, 10, 175, null>
2:<jack, null, null, 'beijing'>
3:<jack, 11, null, null>

如果他们按照1、2、3的顺序写入Paimon主键表中,那么可以得到我们期望的结果:<jack, 11, 175, 'beijing'>

如果先写入了第3条数据,再写入1、2条数据,那么结果就是这样的了:<jack, 10, 175, 'beijing'>,这样就不是我们期望看到的结果了。

所以,针对这种问题,可以使用Sequence Field来解决。
我们可以在建表语句中通过参数sequence.field来指定序列字段,一般建议使用时间字段作为序列字段。

这样就算顺序乱了,也不影响最终合并的结果,因为底层在合并数据的时候会把最大值的数据作为最后合并的结果。

下面我们来具体演示一下:

创建package:tech.xuwei.paimon.sequencefield

创建object:FlinkDataStreamWriteToPaimonForSequencefield

代码中需要用到这几条数据的时间戳:

2023-10-01 10:01:00     1696125660000
2023-10-01 10:01:01     1696125661000
2023-10-01 10:01:02     1696125662000

这个Object负责向Paimon表中模拟写入数据。
代码如下:

package tech.xuwei.paimon.sequencefield


import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.api.common.typeinfo.Types
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.table.api.{DataTypes, Schema}
import org.apache.flink.table.connector.ChangelogMode
import org.apache.flink.types.{Row, RowKind}

/**
 * 使用Flink DataStream API向Paimon表中写入数据
 * Created by xuwei
 */
object FlinkDataStreamWriteToPaimonForSequencefield {
  def main(args: Array[String]): Unit = {
    //获取执行环境
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setRuntimeMode(RuntimeExecutionMode.STREAMING)
    val tEnv = StreamTableEnvironment.create(env)


    //手工构造一个Changelog DataStream 数据流
    val dataStream = env.fromElements(
      Row.ofKind(RowKind.INSERT, "jack", Int.box(11),null,null,Long.box(1696125662000L))//+I
      //Row.ofKind(RowKind.INSERT, "jack", Int.box(10),Int.box(175),null,Long.box(1696125660000L))//+I
      //Row.ofKind(RowKind.INSERT, "jack", null,null,"beijing",Long.box(1696125661000L))//+I
    )(Types.ROW_NAMED(Array("name", "age", "height", "city","ts_millis"),Types.STRING,Types.INT,Types.INT,Types.STRING,Types.LONG))


    //将DataStream转换为Table
    val schema = Schema.newBuilder()
      .column("name", DataTypes.STRING().notNull())//主键非空
      .column("age", DataTypes.INT())
      .column("height", DataTypes.INT())
      .column("city", DataTypes.STRING())
      .column("ts_millis", DataTypes.BIGINT())
      .primaryKey("name")//指定主键
      .build()
    val table = tEnv.fromChangelogStream(dataStream,schema,ChangelogMode.all())

    //创建Paimon类型的Catalog
    tEnv.executeSql(
      """
        |CREATE CATALOG paimon_catalog WITH (
        |    'type'='paimon',
        |    'warehouse'='hdfs://bigdata01:9000/paimon'
        |)
        |""".stripMargin)
    tEnv.executeSql("USE CATALOG paimon_catalog")

    //注册临时表
    tEnv.createTemporaryView("t1",table)

    //创建Paimon类型的表
    tEnv.executeSql(
      """
        |-- 注意:这里的表名使用反引号进行转义,否则会导致SQL DDL语句解析失败。
        |CREATE TABLE IF NOT EXISTS `sequence_field` (
        |    name STRING,
        |    age INT,
        |    height INT,
        |    city STRING,
        |    ts_millis BIGINT,
        |    PRIMARY KEY (name) NOT ENFORCED
        |) WITH (
        |    'changelog-producer' = 'lookup',-- 注意:partial-update表引擎需要和lookup或者full-compaction一起使用时才支持流读
        |    'merge-engine' = 'partial-update',
        |    'partial-update.ignore-delete' = 'true',
        |    'sequence.field' = 'ts_millis',
        |    'sequence.auto-padding' = 'millis-to-micro' -- 将序列字段的精度补足到微妙
        |)
        |""".stripMargin)

    //向Paimon表中写入数据
    tEnv.executeSql(
      """
        |INSERT INTO `sequence_field`
        |SELECT name,age,height,city,ts_millis FROM t1
        |""".stripMargin)
  }

}

注意:在执行代码的时候通过修改env.fromElements(...)中的注释来实现实时产生多条+I类型数据的效果。

接下来创建Object:FlinkDataStreamReadFromPaimonForSequencefield

这个Object负责从Paimon表中实时读取数据。

代码如下:

package tech.xuwei.paimon.sequencefield

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.configuration.{Configuration, RestOptions}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment

/**
 * 使用Flink DataStream API从Paimon表中读取数据
 * Created by xuwei
 */
object FlinkDataStreamReadFromPaimonForSequencefield {
  def main(args: Array[String]): Unit = {
    val conf = new Configuration()
    //指定WebUI界面的访问端口,默认就是8081
    conf.setString(RestOptions.BIND_PORT,"8081")
    //为了便于在本地通过页面观察任务执行情况,所以开启本地WebUI功能
    val env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf)
    env.setRuntimeMode(RuntimeExecutionMode.STREAMING)


    //禁用Chain,把多个算子拆分开单独执行,便于在开发和测试阶段观察,正式执行时不需要禁用Chain
    env.disableOperatorChaining()

    val tEnv = StreamTableEnvironment.create(env)

    //创建Paimon类型的Catalog
    tEnv.executeSql(
      """
        |CREATE CATALOG paimon_catalog WITH (
        |    'type'='paimon',
        |    'warehouse'='hdfs://bigdata01:9000/paimon'
        |)
        |""".stripMargin)
    tEnv.executeSql("USE CATALOG paimon_catalog")

    //执行SQL查询,打印输出结果
    val execSql =
      """
        |SELECT * FROM `sequence_field` -- 此时默认只能查到数据的最新值
        |-- /*+ OPTIONS('scan.mode'='from-snapshot','scan.snapshot-id' = '1') */ -- 通过动态表选项来指定数据读取(扫描)模式,以及从哪里开始读取
        |""".stripMargin
    val table = tEnv.sqlQuery(execSql)
    table.execute().print()

  }

}

接下来首先运行FlinkDataStreamWriteToPaimonForSequencefield向Paimon表中写入一条+I类型的数据。

再运行FlinkDataStreamReadFromPaimonForSequencefield负责读取数据。
此时可以看到控制台输出如下结果:

+----+--------------------------------+-------------+-------------+--------------------------------+----------------------+
| op |                           name |         age |      height |                           city |            ts_millis |
+----+--------------------------------+-------------+-------------+--------------------------------+----------------------+
| +I |                           jack |          11 |      <NULL> |                         <NULL> |        1696125662000 |

修改FlinkDataStreamWriteToPaimonForSequencefield中的代码,继续执行,向Paimon表中写入第2条+I类型的数据。
注意:这条数据的主键和前面的数据是相同的。

//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
  //Row.ofKind(RowKind.INSERT, "jack", Int.box(11),null,null,Long.box(1696125662000L))//+I
  Row.ofKind(RowKind.INSERT, "jack", Int.box(10),Int.box(175),null,Long.box(1696125660000L))//+I
  //Row.ofKind(RowKind.INSERT, "jack", null,null,"beijing",Long.box(1696125661000L))//+I
)(Types.ROW_NAMED(Array("name", "age", "height", "city","ts_millis"),Types.STRING,Types.INT,Types.INT,Types.STRING,Types.LONG))

此时可以在FlinkDataStreamReadFromPaimonForSequencefield的控制台看到如下结果:

| -U |                           jack |          11 |      <NULL> |                         <NULL> |        1696125662000 |
| +U |                           jack |          11 |         175 |                         <NULL> |        1696125662000 |

注意:此时age字段的值没有被更新,因为这一条数据的时间没有上一条数据的时间大,因为我们指定了序列字段是ts_millis,所以ts_millis时间最大值的数据将是最后合并的结果。

其他为null的字段的值是可以被覆盖更新的。

修改FlinkDataStreamWriteToPaimonForSequencefield中的代码,继续执行,向Paimon表中写入第3条+I类型的数据。
注意:这条数据的主键和前面的数据是相同的。

//手工构造一个Changelog DataStream 数据流
val dataStream = env.fromElements(
  //Row.ofKind(RowKind.INSERT, "jack", Int.box(11),null,null,Long.box(1696125662000L))//+I
  //Row.ofKind(RowKind.INSERT, "jack", Int.box(10),Int.box(175),null,Long.box(1696125660000L))//+I
  Row.ofKind(RowKind.INSERT, "jack", null,null,"beijing",Long.box(1696125661000L))//+I
)(Types.ROW_NAMED(Array("name", "age", "height", "city","ts_millis"),Types.STRING,Types.INT,Types.INT,Types.STRING,Types.LONG))

此时可以在FlinkDataStreamReadFromPaimonForSequencefield的控制台看到如下结果:

| -U |                           jack |          11 |         175 |                         <NULL> |        1696125662000 |
| +U |                           jack |          11 |         175 |                        beijing |        1696125662000 |

这样最终得到的结果就是我们期望的了,这就是Sequence Field的典型应用场景了。

3.3 Append Only表(仅追加表)

仅追加表很好理解,只要没有定义主键的表就是仅追加表。

仅追加表采用追加写入的方式,只能支持新增数据,不能更新和删除。

想要创建仅追加表很简单,我们只需要在建表语句中指定这个参数即可: write-mode = append-only

仅追加表主要用于无需更新数据的场景,例如数据仓库中ODS层的数据,不需要进行修改,保留数据原始的样子即可,此时推荐采用Paimon中的仅追加表。

仅追加表可以自动压缩表中的小文件,并且提供有序流式读取,我们也可以通过它来替代消息队列。

在实际工作中,除了数据库中的Binlog这种数据,还有大量的日志数据。
日志数据其实就属于Append Only数据,这种数据的数据量会非常大,一般情况下,我们会把这些日志数据存储在HDFS这种分布式文件系统中。

当我们在Paimon中使用仅追加表来存储这种数据的时候,数据可以实时写入,并且还可以实时读取;而且对实时资源的消耗也比较低,完全可以替代部分消息队列的场景。

最后,我们还需要注意一点,由于仅追加表没有主键,所以建议在使用的时候指定bucket-key,其实就是指定数据分桶(Bucket)的字段。
因为Bucket的范围是由数据中一个或多个列的哈希值确定的,我们可以通过bucket-key参数来指定分桶字段。
如果没有指定分桶字段,则默认会使用整行数据作为分桶字段,这样效率会比较低。

注意:如果是主键表,就算我们没有指定bucket-key,也不会使用整行数据作为分桶字段,因为主键表中有主键字段,默认会使用主键字段作为分桶字段。

下面我们来通过一个案例感受一下仅追加表的使用:

创建package:tech.xuwei.paimon.appendonlytable

创建object:FlinkDataStreamWriteToPaimonForAppendonly

代码如下:

package tech.xuwei.paimon.appendonlytable


![img](https://img-blog.csdnimg.cn/img_convert/c165eb21abdd7333e5f0a2cca68e2216.png)
![img](https://img-blog.csdnimg.cn/img_convert/5045bf678f5168c5052f1a7a579420fa.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

1696125662000L))//+I
  //Row.ofKind(RowKind.INSERT, "jack", Int.box(10),Int.box(175),null,Long.box(1696125660000L))//+I
  Row.ofKind(RowKind.INSERT, "jack", null,null,"beijing",Long.box(1696125661000L))//+I
)(Types.ROW_NAMED(Array("name", "age", "height", "city","ts_millis"),Types.STRING,Types.INT,Types.INT,Types.STRING,Types.LONG))

此时可以在FlinkDataStreamReadFromPaimonForSequencefield的控制台看到如下结果:

| -U |                           jack |          11 |         175 |                         <NULL> |        1696125662000 |
| +U |                           jack |          11 |         175 |                        beijing |        1696125662000 |

这样最终得到的结果就是我们期望的了,这就是Sequence Field的典型应用场景了。

3.3 Append Only表(仅追加表)

仅追加表很好理解,只要没有定义主键的表就是仅追加表。

仅追加表采用追加写入的方式,只能支持新增数据,不能更新和删除。

想要创建仅追加表很简单,我们只需要在建表语句中指定这个参数即可: write-mode = append-only

仅追加表主要用于无需更新数据的场景,例如数据仓库中ODS层的数据,不需要进行修改,保留数据原始的样子即可,此时推荐采用Paimon中的仅追加表。

仅追加表可以自动压缩表中的小文件,并且提供有序流式读取,我们也可以通过它来替代消息队列。

在实际工作中,除了数据库中的Binlog这种数据,还有大量的日志数据。
日志数据其实就属于Append Only数据,这种数据的数据量会非常大,一般情况下,我们会把这些日志数据存储在HDFS这种分布式文件系统中。

当我们在Paimon中使用仅追加表来存储这种数据的时候,数据可以实时写入,并且还可以实时读取;而且对实时资源的消耗也比较低,完全可以替代部分消息队列的场景。

最后,我们还需要注意一点,由于仅追加表没有主键,所以建议在使用的时候指定bucket-key,其实就是指定数据分桶(Bucket)的字段。
因为Bucket的范围是由数据中一个或多个列的哈希值确定的,我们可以通过bucket-key参数来指定分桶字段。
如果没有指定分桶字段,则默认会使用整行数据作为分桶字段,这样效率会比较低。

注意:如果是主键表,就算我们没有指定bucket-key,也不会使用整行数据作为分桶字段,因为主键表中有主键字段,默认会使用主键字段作为分桶字段。

下面我们来通过一个案例感受一下仅追加表的使用:

创建package:tech.xuwei.paimon.appendonlytable

创建object:FlinkDataStreamWriteToPaimonForAppendonly

代码如下:

package tech.xuwei.paimon.appendonlytable


[外链图片转存中...(img-pT7g8366-1715277086021)]
[外链图片转存中...(img-6cGel7dH-1715277086021)]

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值